Natural Sciences and Mathematics | Faculty Scholarship
 

Title

Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase

Digital Object Identifier / DOI

https://doi.org/10.1073/pnas.1419701112

Department

Natural Sciences and Mathematics

Document Type

Article

Source

Proceedings of the National Academy of Sciences

Publication Date

12-23-2014

ISSN

1091-6490

Volume

111

Issue

51

First Page

18237

Last Page

18242

Abstract

Aliphatic medium-chain 1-alkenes (MCAEs, ∼10 carbons) are "drop-in" compatible next-generation fuels and precursors to commodity chemicals. Mass production of MCAEs from renewable resources holds promise for mitigating dependence on fossil hydrocarbons. An MCAE, such as 1-undecene, is naturally produced by Pseudomonas as a semivolatile metabolite through an unknown biosynthetic pathway. We describe here the discovery of a single gene conserved in Pseudomonas responsible for 1-undecene biosynthesis. The encoded enzyme is able to convert medium-chain fatty acids (C10-C14) into their corresponding terminal olefins using an oxygen-activating, nonheme iron-dependent mechanism. Both biochemical and X-ray crystal structural analyses suggest an unusual mechanism of β-hydrogen abstraction during fatty acid substrate activation. Our discovery unveils previously unidentified chemistry in the nonheme Fe(II) enzyme family, provides an opportunity to explore the biology of 1-undecene in Pseudomonas, and paves the way for tailored bioconversion of renewable raw materials to MCAE-based biofuels and chemical commodities.

PubMed ID

25489112

Share

COinS