Natural Sciences and Mathematics

Document Type



ACS Omega

Publication Date



The present research is primarily focused on investigating the characteristics of environmentally persistent free radicals (EPFRs) generated from commonly recognized aromatic precursors, namely, 1,2-dichlorobenzene (DCB) and 2- monochlorophenol (MCP), within controlled laboratory conditions at a temperature of 230 °C, termed as DCB230 and MCP230 EPFRs, respectively. An intriguing observation has emerged during the creation of EPFRs from MCP and DCB utilizing a catalyst 5% CuO/SiO2, which was prepared through various methods. A previously proposed mechanism, advanced by Dellinger and colleagues (a conventional model), postulated a positive correlation between the degree of hydroxylation on the catalyst’s surface (higher hydroxylated, HH and less hydroxylated, LH) and the anticipated EPFR yields. In the present study, this correlation was specifically confirmed for the DCB precursor. Particularly, it was observed that increasing the degree of hydroxylation at the catalyst’s surface resulted in a greater yield of EPFRs for DCB230. The unexpected finding was the indifferent behavior of MCP230 EPFRs to the surface morphology of the catalyst, i.e., no matter whether copper oxide nanoparticles are distributed densely, sparsely, or completely agglomerated. The yields of MCP230 EPFRs remained consistent regardless of the catalyst type or preparation protocol. Although current experimental results confirm the early model for the generation of DCB EPFRs (i.e., the higher the hydroxylation is, the higher the yield of EPFRs), it is of utmost importance to closely explore the heterogeneous alternative mechanism(s) responsible for generating MCP230 EPFRs, which may run parallel to the conventional model. In this study, detailed spectral analysis was conducted using the EPR technique to examine the nature of DCB230 EPFRs and the aging phenomenon of DCB230 EPFRs while they exist as surface-bound o-semiquinone radicals (o-SQ) on copper sites. Various aspects concerning bound radicals were explored, including the hydrogen-bonding tendencies of o-semiquinone (o-SQ) radicals, the potential reversibility of hydroxylation processes occurring on the catalyst’s surface, and the analysis of selected EPR spectra using EasySpin MATLAB. Furthermore, alternative routes for EPFR generation were thoroughly discussed and compared with the conventional model.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Chemistry Commons