Lack of resistance of Plasmodium falciparum to dihydroartemisinin in Uganda based on parasitoldogical and molecular assays

Roland A. Cooper
Department of Natural Sciences and Mathematics, Dominican University of California, roland.cooper@dominican.edu

Melissa D. Conrad
Department of Medicine, University of California, San Francisco

Quentin D. Watson
Department of Integrative Biology, University of California, Berkeley

Stephanie J. Huezo
Department of Integrative Biology, University of California, Berkeley, shuezo906@gmail.com

Harriet Ninsiima
Infectious Diseases Research Collaboration, Kampala, Uganda

Follow this and additional works at: https://scholar.dominican.edu/all-faculty
Part of the [Microbiology Commons](https://scholar.dominican.edu/all-faculty/26), [Parasitology Commons](https://scholar.dominican.edu/all-faculty/27), and the [Pharmacology, Toxicology and Environmental Health Commons](https://scholar.dominican.edu/all-faculty/28)

Recommended Citation

https://scholar.dominican.edu/all-faculty/89
Authors
Roland A. Cooper, Melissa D. Conrad, Quentin D. Watson, Stephanie J. Huezo, Harriet Ninsiima, Patrick Tumwebaze, Samuel L. Nsobya, and Philip J. Rosenthal

This conference proceeding is available at Dominican Scholar: https://scholar.dominican.edu/all-faculty/89
Lack of resistance of *Plasmodium falciparum* to dihydroartemisinin in Uganda based on parasitological and molecular assays

Roland A. Cooper, Melissa D. Conrad, Quentin D. Watson, Stephanie J. Huezo, Harriet Ninsiiwa, Patrick Tumwebaze, Samuel L. Nsobya, and Philip J. Rosenthal

Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA; Department of Medicine, University of California, San Francisco, USA; Department of Integrative Biology, University of California, Berkeley, USA; Infectious Diseases Research Collaboration, Kampala, Uganda

Introduction

- Artemisinin-based combination therapy is now standard treatment for falciparum malaria. However, this regimen is threatened by resistance to artemisinins, manifest as delayed clearance of parasitemia after therapy, in southeast Asia.

- Artemisinin resistance in southeast Asia is associated with increased parasitemias in culture, compared to those in sensitive parasites, 72 hours after a 6 hour pulse with 700 nM dihydroartemisinin (DHA), and with propeller domain polymorphisms in the *Plasmodium falciparum* kelch (K13; PF3D7_1343700) gene.

- Given that artemether/lumefantrine has been adopted as standard therapy for malaria within the last decade in Uganda, we characterized artemisinin sensitivity in fresh *P. falciparum* isolates from Kampala using *ex vivo* ring-stage survival and IC50 assays. We also assessed the K13 gene for polymorphisms.

Methods

Fig. 1. Study site - Kampala, UG.

Parasite isolate collection, filter papers (N=53)

Parasite isolate collection, filter papers for K13, pfcrt and pfmdr1 genotyping (N = 15)

Ex vivo IC50 assays (N = 15)

Ex vivo ring-stage survival assays (N = 43)

- gDNA from filter papers for K13, pfcrt and pfmdr1 genotyping

- Long term cultures to test for recrudescence (N = 12)

53 fresh *P. falciparum* isolates were collected from patients diagnosed with malaria from May-August 2014, at Mulago Hospital, Kampala.

Parasite IC50s to DHA were determined by a standard 72 h *ex vivo* microplate assay using HRP2 detection.

Parasite susceptibility to DHA was assessed in the *ex vivo* ring-stage survival assay as described. Survival rates were expressed as the proportion of parasites in the 6 h, 700 nM DHA-pulsed cultures relative to DMSO controls, at the end of the 72 hour assay. Twelve cultures exposed to DHA were allowed to grow for 30 d to test for recrudescence.

K13 propeller-encoding domains (codons 440-726) were dideoxy sequenced. Polymorphisms in pfcrt and pfmdr1 were assessed with multiplex ligation detection reaction-fluorescent microsphere assays as previously described.

Results

Fig. 2. Ring-stage survival assay.

- Ring-stage survival was 0% in 40/43 cultures
- Ring-stage survival ranged 0.7 - 1.9% in 3/43 cultures
- No association with survival and SNPs in K13, pfcrt or pfmdr1
- Parasites reemerged from 10/12 long-term cultures after DHA pulse

Fig. 3. Prevalences of wild-type, mixed, and mutant sequences at the indicated positions for all 53 isolates.

Fig. 4. Ex vivo IC50 values for DHA from 15 isolates. The geometric mean IC50 value was 1.6 nM.

Fig. 5. Two kelch (K13) polymorphisms were detected from our samples. Numbered boxes indicate the six blades comprising the propeller domain of the kelch 13 protein.

Summary and Conclusions

K13 mutations were found in 2/53 parasite isolates from Kampala, but were not mutations associated with resistance in SE Asia.

RSA and IC50 data showed that parasites remain highly sensitive to DHA *in vitro*.

The results of this study, as well as findings from other studies, suggest that artemisinin resistance is not yet a problem in Uganda. The polymorphic nature of K13 in Africa and altered ACT partner drug sensitivity in Uganda indicate the continued need for surveillance of ACT efficacy in the region.

Acknowledgements

We thank Jenny Legar, Michelle Vychrve, and Hadjulf Nalwele for technical assistance. This work was supported by NIH grants AI023462 and AI086993. Training in Malaria Research in Uganda [D43TW007375] and University of California, Berkeley Minority Health & Health Disparities International Research Training [T57MD003407].

References