Scale up isolation of aaptamine for in vivo evaluation indicates its neurobiological activity is linked to the delta opioid receptor

Eptisam Lambu
Dominican University of California, San Rafael, California, USA

Nicole L. McIntosh
Department of Natural Sciences and Mathematics, Dominican University of California

Madeline Ferwerda
Department of Neurology, University of California, San Francisco

Allison Coker
Department of Neurology, University of California, San Francisco

Laura Millan-Lobo
Department of Neurology, University of California, San Francisco

See next page for additional authors

Survey: Let us know how this paper benefits you.

Recommended Citation

Lambu, Eptisam; McIntosh, Nicole L.; Ferwerda, Madeline; Coker, Allison; Millan-Lobo, Laura; Lorig-Roach, Nicholas; Crews, Phillip; and Whistler, Jennifer L., "Scale up isolation of aaptamine for in vivo evaluation indicates its neurobiological activity is linked to the delta opioid receptor" (2015). *Student Research Posters*. 68.
https://scholar.dominican.edu/ug-student-posters/68

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Authors
Eptisam Lambu, Nicole L. McIntosh, Madeline Ferwerda, Allison Coker, Laura Millan-Lobo, Nicholas Lorig-Roach, Phillip Crews, and Jennifer L. Whistler
Scale up isolation of aaptamine for *in vivo* evaluation indicates its neurobiological activity is linked to the delta opioid receptor

Eptisam M. Lambo1, Nicole L. McIntosh1, Madeline Ferwerda2, Allison Coker3, Lauren Milan-Lobo3, Nicholas Lorig-Roache2, Phillip Crews2, Jennifer L. Whistler1 and Tyler A. Johnson1,2

1Department of Natural Sciences & Mathematics, Dominican University of California
2Department of Chemistry & Biochemistry, University of California, Santa Cruz
3Department of Neurology, University of California, San Francisco

1 These authors contributed equally to this work

Introduction

Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. The Mu (μ), Delta (δ) and Kappa (KOR) opioid receptors are particularly intriguing members of this receptor family as they are the targets involved in many neurobiological diseases such as addiction, pain, stress, anxiety, and depression. To date few marine natural products have been investigated for their neurobiological activities.1 One noteworthy example involves ziconotide (1) from the cone snail *Conus magus.2* Compound 1 was the first marine natural product approved by the FDA and is used for the treatment of pain, marketed under the trade name Prialt® (2004).3 More recently Hamann reported that aaptamine (2) is the first marine natural product to show in vivo anti-depressant activity, however no mechanism of action was proposed.4,5 During a separate collaborative screening project we profiled 96 sponge-derived extracts and discovered that demethyl-aaptamine (3) and demethyl (oxy)-aaptamine (4) were selective DOR agonists using an LC-MS based library of an active methanolic extract coll. no. 92553 FM as shown in Fig. 1. We speculated that the in vivo activity for 2 could thus be linked to the DOR target and to test this hypothesis we conducted the following experiments below.

Experimental and Results

Our first step involved obtaining a source of aaptamine (2) for in vitro and in vivo evaluation. Compounds 3-4 were obtained from the sponge *Aaptos aaptos* (coll. no. 92553) but were devoid of 2. LC-MS analysis of sponge coll. no. 11308 (*A. aaptos*) indicated m/z ions of 229 [M+H]+ consistent with that of 2 (not shown). We extracted coll. no. 11308 using a partition scheme shown in Fig. 2. The WB extract was enriched with 2 based on LC-MS data in Fig. 3a and used to scale up its isolation by HPLC shown in Fig. 3b. Chemical validation of pure 2 was confirmed by LC-MS and 1H NMR data in Fig. 4. This allowed us to screen 2-3 and confirm its DOR activity in vitro (2, EC50 = 5.1; 3, EC50 = 4.1; 4, EC50 = 2.3). In vivo evaluation indicated 2 was an antidepressant in wild type mice in the forced swim test (Fig. 5a, black bars) while having no effect on general locomotion (Fig. 5b). We further found that the antidepressant activity was abolished in genetically modified mice where the DOR gene was knocked out (Fig. 5a, red bars, DOR KO). We also found 2 was an anxiolytic in the marble burying test (Fig. 5c). These results indicate the antidepressant activity previously reported for 2 is mediated by its anxiolytic activity of the delta opioid receptor.

Conclusions

1) Scale up isolation of aaptamine (2) is best achieved through purification of water soluble extracts.
2) The mechanism of action for the in vivo anti-depressant-like and anxiolytic-like activity of 2 is mediated by it’s agonist activity of the delta opioid receptor (DOR).
3) These data suggest that 2 can represent a novel chemical scaffold for the development of new DOR ligands in neurological research.

Acknowledgements

Financial support was provided by NIH grants: ROI CA 47135 (PC), ROI AA 028401, ROI DA019938, ROI DA0015232, R21 DA031574 (JW), International Cooperative Biodiversity Group (ICBG) grant no. 15011TW008160 (JW, TJ), and by the Fletcher Jones Fund of Dominican University of California (TJ).

References

4(Alison Coker, 186-189).
5(First marine natural product approved by the FDA for the treatment of pain, marketed under the trade name Prialt® (2004).

Figure 1. a) LC-MS library with annotations including m/z ions and b) Comparative DOR agonist activity of the methanol extract LC fractions of coll. no. 92553 FM.

Figure 2. Extraction Scheme Flowchart of coll. no. 11308

Figure 3. a) Analytical traces LC (top) MS (bottom) of coll. no. 11308 WB and b) Preparatory scale up HPLC traces of coll. no. 11308 WB fractions.

Figure 4. Chemical validation of aaptamine (2) using: a) LC-MS-ELSD analysis with annotations including m/z ions and b) 1H NMR data of 11308 WB H6.

Figure 5. Mice were injected with saline or aaptamine (2, 40mg/kg, i.p.) and subjected to: a) a forced swim test (a), a locomotor test (b) or a marble burying test (c). Swiss mice were injected (i.p.) with saline or aaptamine (2, 40 mg/kg) and allowed to explore a novel environment for 30 minutes. For the marble burying test, mice were placed in a cage with 5 cm of wood shavings and 35 empty ground marbles for 20 minutes. At the end of the session, the number of marbles buried and exposed were counted. Aaptamine (2) was effective in WT but not DOR knock out (KO) (p<0.05 compared to saline).