Occupational Therapy in the Intensive Care Unit

Michelle Chan
Dominican University of California

Kelsie Colombini
Dominican University of California

Kristen M. Henderson
Dominican University of California

Courtney Malachowski
Dominican University of California

Follow this and additional works at: http://scholar.dominican.edu/ug-student-posters

Part of the [Occupational Therapy Commons](http://scholar.dominican.edu/ug-student-posters)

Recommended Citation
Chan, Michelle; Colombini, Kelsie; Henderson, Kristen M.; and Malachowski, Courtney, "Occupational Therapy in the Intensive Care Unit" (2017). _Student Research Posters_. 31.
http://scholar.dominican.edu/ug-student-posters/31

This Presentation is brought to you for free and open access by the The Dominican Experience at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact
michael.pujals@dominican.edu.
Occupational Therapy in the Intensive Care Unit

Michelle Chan, Kelsie Colombini, Kristen Henderson, & Courtney Malachowski
Faculty Advisor: Kitsum LI, OTD, OTR/L, CSRS
Dominican University of California, Department of Occupational Therapy, San Rafael, CA
IRBPHS Approval #10109

Introduction

Hospitals in America are seeing a rise in the number of inpatient cardiac surgeries, increasing from 5,939,000 in 2000 to 7,588,000 in 2010 (Mozaffarian et al., 2015). As more patients require cardiac surgery, occupational therapy services are needed in the intensive care unit (ICU) to facilitate patients’ return to their daily lives. Due to the nature of cardiac surgery, patients’ physical, cognitive, and psychosocial well-being may be affected. Occupational therapists use a holistic approach to healthcare by addressing the entire person. This supports the incorporation of assessment and interventions for physical, cognitive, and psychosocial factors in the ICU during recovery. Addressing these three factors may promote overall health and well-being, as well as increase participation in meaningful activities.

Psychosocial Factors

Patients that undergo cardiac surgery are at an increased risk for developing depression and anxiety which may have long lasting symptoms that may negatively impact their quality of life (Paparrigopoulos et al., 2013). Literature has shown the prevalence of depression to be 23% and anxiety to be 45.5% post cardiac surgery (Pirraglia et al., 1999; Tully, Baker, Turnbull, & Winefield, 2008).

Evidence shows patients of undergoing cardiac surgery have 25% more symptoms of depression and anxiety than the patient themself (Buzen et al. 2007).

To identify impairments in psychosocial functioning, the Hospital Anxiety and Depression Scale (HADS) may be administered to patients. The HADS demonstrates high validity, specificity, and sensitivity to both anxiety and depressive symptoms (Bjelland, Dahl, Haug, & Neckelmann, 2001).

To address anxiety and depression in patients that undergo cardiac surgery, psychosocial education and music therapy are both supported by evidence. Patients and partners who received psychosocial education had decreased anxiety and depression, as well as a significant improvement well-being (Ågren, Berg, Svedjeholm, & Storbom, 2015). Implementing music therapy post cardiac surgery significantly reduced pain and anxiety in patients undergoing cardiac surgery (Sendelbach, Halm, Doran, Miller, & Gailiard, 2006).

Statement of Purpose

An evidence-based clinical pathway ensures that the most appropriate and effective guidelines, assessments, and interventions are implemented to create consistent and unbiased care, facilitate patients’ return to their highest level of functioning, and improve patients’ overall quality of life. Therefore, the goal of this project was to propose a clinical pathway for the occupational therapy department at Mills-Peninsula Medical Center in Burlingame, CA. The proposed clinical pathway addresses common physical, cognitive, and psychosocial factors that may arise in patients post cardiac surgery during their stay in the ICU and step-down unit.

Clinical Pathway for Intensive Care Unit

The purpose of the proposed occupational therapy evidence-based clinical pathway at Mills-Peninsula Medical Center is to develop a clinical guide for occupational therapy interventions for patients post cardiac surgery on the intensive care and step-down units. This clinical pathway addresses common physical, cognitive, and psychosocial factors that may arise in patients post cardiac surgery and creates a standard for consistent and effective treatment.

Ommedical Therapy Evidence-Based Clinical Pathway

Guidelines

Day 1: Transfer to Step-Down Unit

Education
- Emotional Preparations - refer to "Thermal Stress" (565)
- Tissue Oxygen Receptors (OTR) were indicated
- Clinical evaluation of patients with cardiac surgery

Early Motivation
- Tibial nerve block with KCl
- Evaluate the patient's ability to tolerating an abnormally high level of pain
- Knee extension

Day 2: Transfer to Step-Down Unit

Education
- General preparations - refer to "Thermal Stress" (565)

Early Motivation
- Tibial nerve block with KCl
- Evaluate the patient's ability to tolerating an abnormally high level of pain
- Knee flexion

Day 3: Transfer to Step-Down Unit

Education
- Emotional Preparations - refer to "Thermal Stress" (565)
- Tissue Oxygen Receptors (OTR) were indicated
- Clinical evaluation of patients with cardiac surgery

Early Motivation
- Tibial nerve block with KCl
- Evaluate the patient's ability to tolerating an abnormally high level of pain
- Knee extension

Guideline

Day 4: Discharged

Education
- General preparations - refer to "Thermal Stress" (565)

Early Motivation
- Tibial nerve block with KCl
- Evaluate the patient's ability to tolerating an abnormally high level of pain
- Knee flexion

Cognitive Factors

Early identification of mild cognitive impairment (MCI) in patients that undergo cardiac surgery should occur prior to discharge from acute care. In a longitudinal study that followed 261 patients post coronary artery bypass graft (CABG), the incidence of cognitive decline was 53% at discharge, 36% at six weeks after surgery, 24% at six months after surgery, and 42% at five years after surgery (Neurology, 2010). Additionally, in a longitudinal study, Nordlund, Aren, and Rubberg (2003) found that patients post CABG experienced impairments in attention and traffic behavior during an on-the-road test. Ayküy, Albayrak, Guzeloglu, Baysak, and Hazan (2013) found that patients post CABG experienced noncompliance with respiratory exercises, which increased difficulty learning management of inhalers as a result of MCI. Both studies demonstrate the significant impact MCI has on safety.

Cameron, Carter, Page, Stewart, and Ski (2013) compared the Mini Mental State Exam (MMSE) and the Montreal Cognitive Assessment (MoCA) and found that the MoCA classifies over 41% of patients with heart failure as cognitively impaired that were not classified as having MCI by the MMSE.

Physical Factors

The inclusion of early mobilization in occupational therapy intervention for patients post cardiac surgery in the ICU is supported by current literature. Studies show early mobilization may reduce the effects of disuse muscle atrophy by maintaining or improving patients’ functional participation, endurance, and muscle strength (Citerio et al., 2015; Fan, 2012; Nordon-Craft et al., 2012). The progression of early mobilization in the ICU may be guided by Metabolic Equivalent of Task, vital signs, and the presence of complications (Joo et al., 2009; Preston & Flynn, 2010; Savage, Toth, & Ades, 2007).

Stental instability may result in pain that limits patients’ ability to perform daily tasks (El-Ansary, Waddington, & Adams, 2007; Kun & Xibun, 2009; Olibrecht et al., 2006; Tuyt, Mackney, & Johnston, 2012). To address this concern, guided supports the inclusion of thoracic exercises and precautionary stent placements to facilitate proper healing of the stent and prevent complications post cardiac surgery (Brocki, Thorup, & Andreasen, 2010; Cahalin et al., 2011; Sturgess, Deneyh, Tully, & El-Ansary, 2014).