Occupational Therapy in the Intensive Care Unit

Michelle Chan
Dominican University of California

Kelsie Colombini
Dominican University of California

Kristen M. Henderson
Dominican University of California

Courtney Malachowski
Dominican University of California

Survey: Let us know how this paper benefits you.

Recommended Citation
https://scholar.dominican.edu/ug-student-posters/31

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Introduction

Hospitals in America are seeing a rise in the number of patients undergoing cardiac surgery, increasing from 5,939,000 in 2000 to 7,588,000 in 2010 (Mozaffarian et al., 2015). As more patients require cardiac surgery, occupational therapy services are needed in the intensive care unit (ICU) to facilitate patients’ return to their daily lives. Due to the nature of cardiac surgery, patients’ physical, cognitive, and psychosocial well-being may be affected. Occupational therapists use a holistic approach to healthcare by addressing the entire person. This supports the individual’s progress and improvements in physical, cognitive, and psychosocial factors in the ICU during recovering. Addressing these three factors may promote overall health and well-being, as well as increase participation in meaningful activities.

Psycosocial Factors

Patients that undergo cardiac surgery are at an increased risk for developing depression and anxiety which may have long-lasting symptoms that may negatively impact their quality of life (Papapapadopoulou et al., 2013). Literature has shown the prevalence of depression to be 23% and anxiety to be 45.5% post cardiac surgery (Pirraglia et al., 1999; Tully, Baker, Turnbull, & Winnfield, 2008).

Evidence shows patients undergoing cardiac surgery have 25% more symptoms of depression and anxiety than the patient themselves (Buzul et al. 2007).

To identify impairments in psychosocial functioning, the Hospital Anxiety and Depression Scale (HADS) may be administered to patients. The HADS demonstrates high validity, specificity, and sensitivity to both anxiety and depressive symptoms (Bjelland, Dahl, Haug, & Neckelmann, 2002).

To address anxiety and depression in patients that undergo cardiac surgery, psychosocial education and music therapy are both supported by evidence. Patients and partners who received psychosocial education had decreased anxiety and depression, as well as a significant improvement well-being (Argen, Berg, Svendsjölb, & Stålbom, 2015). Implementing music therapy post cardiac surgery significantly reduced pain and anxiety in patients undergoing cardiac surgery (Sendelback, Halm, Doran, Miller, & Gaillard, 2006).

Occupational Therapy Evidence-Based Clinical Pathway

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3: Transfer to Step-Down Unit</th>
<th>Day 4 to Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educate</td>
<td>Educate</td>
<td>Educate</td>
<td>Educate</td>
</tr>
<tr>
<td>Cognitive Factors</td>
<td>Cognitive Factors</td>
<td>Cognitive Factors</td>
<td>Cognitive Factors</td>
</tr>
</tbody>
</table>

Cognitive Factors

Early identification of mild cognitive impairment (MCI) in patients that undergo cardiac surgery should occur prior to discharge from acute care. In a longitudinal study that followed 261 patients post coronary artery bypass graft (CABG), the incidence of cognitive decline was 53% at discharge, 36% at six weeks after surgery, 24% at six months after surgery, and 42% at five years after surgery (Nesbitt et al., 2010). After cognitive assessment, Nguyen, Nordlund, Arndt, Thorup, and Ruberg (2003) found that patients post CABG experienced impairments in attention and irritability behavior during an on-the-road test. Ajuyt, Albayrak, Guzeloglu, Baysak, and Hazan (2013) found that patients post CABG experienced noncompliance with respiratory exercises and increased difficulty learning management of inhalers as a result of MCI. Both studies demonstrate the significant impact MCI has on safety.

Cameron, Carter, Page, Stewart, and Ski (2013) compared the Mini Mental State Exam (MMSE) and the Montreal Cognitive Assessment (MoCA) and found that the MoCA classifies 41% of patients with heart failure as cognitively impaired that were not classified as having MCI by the MMSE.

Physical Factors

The inclusion of early mobilization in occupational therapy intervention for patients post cardiac surgery in the ICU is supported by current literature. Studies show early mobilization may reduce the effects of muscle atrophy by maintaining or improving patients functional participation, endurance, and muscle strength (Citerio et al., 2015; Fan, 2012; Norden-Craft et al., 2012). The progression of early mobilization in the ICU may be guided by Metabolic Equivalent of Task, vital signs, and reduced situation (Joo et al., 2004; Preston & Flynn, 2010; Savage, Toth, & Ates, 2007).

Sternal instability may result in pain that limits patients’ ability to perform daily tasks (El-Ansary, Waddington, & Adams, 2007; Kun & Künib, 2009; Ollbrecht et al., 2006; Tuya, Mackney, & Johnstone, 2012). To address this concern, guided mobilization supports the inclusion of thoracic exercises and precautionary sternal precautions to facilitate proper healing of the sternum and pulmonary return 41% of patients with heart failure (Brocki, Thorup, & Andreasen, 2010; Cahanlin et al., 2011; Sturgess, Denehy, Tully, & El-Ansary, 2014).