2015

Bridge/Adapt: Transfer from Computer Remediation to Functional Skill

Eugene Cheung
Dominican University of California

Janice S. Li
Dominican University of California

Diana Lopez
Dominican University of California

Angela Talamantez
Dominican University of California

Survey: Let us know how this paper benefits you.
Follow this and additional works at: https://scholar.dominican.edu/ug-student-posters

Part of the [Occupational Therapy Commons](https://scholar.dominican.edu/ug-student-posters)

Recommended Citation
https://scholar.dominican.edu/ug-student-posters/16

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Bridge/Adapt: Transfer from Computer Remediation to Functional Skill
Eugene Cheung, Janice Li, Diana Lopez, and Angela Talamantez
Thesis Advisor: Kitsum Li, OTD, OTR/L
Dominican University of California, Department of Occupational Therapy, San Rafael, CA
IRBPHS Approval #10306

INTRODUCTION
Individuals with acquired brain injury (ABI) often experience cognitive deficits that impair their ability to perform instrumental activities of daily living, which results in decreased quality of life (Cicerone et al., 2011). Computer-based cognitive rehabilitation (CBCR), a remedial intervention, addresses these cognitive deficits by improving cognitive skills, such as memory and attention. However, these improvements do not generalize into functional performance (Li et al., 2015). Bridge/Adapt was developed to bridge the gap between remedial intervention and functional performance. It combines remedial and adaptive strategies, with focus on self-awareness and self-generation of strategies through two occupational therapy frameworks: Cognitive Orientation to daily Occupational Performance (CO-OP) and the multicontext approach.

LITERATURE REVIEW
• Neuroplasticity is the brain’s process of changing neural structures and connections, and it is the process by which learning and recovery of cognitive skills is possible (Berlucchi, 2011).
• Generalization is the ability to transfer skills and strategies learned in one context to various novel situations and environments (Toglia, 1991). It is crucial in increasing independence.
• CO-OP uses adaptive strategies for improving functional skills in individuals with a variety of different conditions. The therapist guides the individual to discover and plan strategies to meet these goals (Dawson et al., 2009).
• Multicontext approach facilitates generalization of cognitive strategies for individuals with ABI (Toglia, 1991). Key aspects include gradually grading activities, improving the individual’s metacognitive skills, and developing the individual’s ability to self-generate cognitive strategies (Toglia, Johnston, Goverover, & Dain, 2010).

METHODOLOGY
Bridge/Adapt is an eight-week program consisting of three weekly components:
• Parrot Software: remedial CBCR lessons focused on memory or attention followed by group discussion
• Bridge/Adapt module: group instruction taught adaptive strategies via simulated activities (e.g. bill paying and shopping)
• Homework: assignments required participants to apply adaptive strategies in a self-selected, occupation-based goal in their natural environments

RESULTS
Participants were assessed using a battery of measures, including Cognistat, medication box assessment, and goal attainment scale (GAS). For the medication box assessment, the percentage of correct tasks and the time taken to complete the tasks were recorded. For the goal attainment scale, the percentage of tasks completed and the satisfaction with the tasks were recorded.

CASE STUDIES
• Participant A: 67-year-old male, 7 years post-ABI. He required maximum prompting to stay on-task, initiate problem-solving, and apply the adaptive strategies. He had minimal support from a paid caregiver. He had the greatest overall Cognistat score improvement but did not generalize to performance on the medication box assessment.
• Participant B: 70-year-old female, 16 years post-TBI. She stayed on-task, initiated problem-solving, independently sought assistance, and consistently applied the adaptive strategies. She had no additional support. She improved in attention, memory, and overall Cognistat score. She generalized those improvements on the medication box assessment.
• Participant C: 75-year-old male, 2 years post-TBI. He stayed on-task, initiated problem-solving, and applied the adaptive strategies. He had moderate support from a non-paid caregiver. He had the greatest improvement in memory but did not generalize to performance on the medication box assessment.

CONCLUSIONS
• Bridge/Adapt may be ineffective as a group-based intervention in facilitating generalization of improved cognitive skills to functional performance.
• Consistent with previous findings, CBCR appears to have a positive effect on memory and cognition.
• The degree of external support and client factors like active participation play key roles in facilitating successful skill generalization.
• A balance of intrinsic motivation and external support are key factors for success.

RECOMMENDATIONS
Bridge/Adapt may be more effective:
• As an individual-based intervention
• For more acute post-ABI clients, who are more likely to be receptive to learning new strategies and motivated to return to previous life roles and occupations
• To focus on teaching adaptive strategies in client-centered, meaningful occupations rather than using simulated activities.