Scale Up Isolation of Aaptamine for In Vivo Evaluation Indicates Its Neurobiological Activity is Linked to the Delta Opioid Receptor

Nicole L. McIntosh
Dominican University of California

Eptisam Lambo
Dominican University of California

Laura Millan-Lobo
University of California - San Francisco

Fei Li
University of California - San Francisco

Li He
University of California - San Francisco

See next page for additional authors

Survey: Let us know how this paper benefits you.

Recommended Citation
McIntosh, Nicole L.; Lambo, Eptisam; Millan-Lobo, Laura; Li, Fei; He, Li; Crews, Phillip; Whistler, Jennifer L.; and Johnson, Tyler, "Scale Up Isolation of Aaptamine for In Vivo Evaluation Indicates Its Neurobiological Activity is Linked to the Delta Opioid Receptor" (2015). *Student Research Posters*. 9.
https://scholar.dominican.edu/ug-student-posters/9

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Authors
Nicole L. McIntosh, Eptisam Lambo, Laura Millan-Lobo, Fei Li, Li He, Phillip Crews, Jennifer L. Whistler, and Tyler Johnson

This presentation is available at Dominican Scholar: https://scholar.dominican.edu/ug-student-posters/9
Scale up isolation of aaptamine for in vivo evaluation indicates its neurobiological activity is linked to the delta opioid receptor

Eptisam Lambo†, Nicole L. McIntosh†, Laura Millan-Lobo†, Fei Li§, Li-He§, Phillip Crews*, Jennifer L. Whistler† and Tyler A. Johnson†,§

†Department of Natural Sciences & Mathematics, Dominican University of California
‡Department of Chemistry & Biochemistry, University of California, Santa Cruz
§Department of Neurology, University of California, San Francisco
*These authors contributed equally to this work

Introduction

Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. The Mu, Delta and Kappa (MOR, DOR, KOR) opioid receptors are particularly intriguing members of this receptor family as they are the targets involved in many neurobiological diseases such as addiction, pain, stress, anxiety, and depression. To date few marine natural products have been investigated for their neurobiological activities.3 One noteworthy example involves ziconotide (1) from the cone snail Conus magnus.2 Compound 1 was the first marine natural product approved by the FDA and is used for the treatment of pain, marketed under the trade name Prialt® (2004).3 More recently Hamman reported that aaptamine (2) is the first marine natural product to show in vivo antidepressant activity, however no mechanism of action was proposed.4 During a separate collaborative screening project we profiled 96 sponge-derived extracts and discovered demethyl-aaptamine (3) and demethyl (oxy) – aaptamine (4) were selective DOR agonists as shown in Figure 1. We speculated that the in vivo activity for 2 could thus be linked to the DOR target and to test this hypothesis we conducted the following experiments below.

Experimental and Results

Our first step involved obtaining a source of aaptamine (2) for in vitro and in vivo evaluation. Compounds 3-4 were obtained from the sponge Aaptos aaptos (coll. no. 92553) but were devoid of 2. LC-MS analysis of sponge coll. no. 11308 (A. aaptos) indicated m/z ions of 229.1 amu consistent with that of 2 (not shown). We extracted coll. no. 11308 using a partition scheme shown in Figure 2. The WB extract was enriched with 90% MeOH/H2O MeOH/H2O (138.8 mg) and used to scale up its isolation by HPLC shown in Figure 3a. The LC-MS data in Figure 3b) was confirmatory. aaptamine (2) was effective in WT but not DOR knock out (KO) mice (* p<.05 compared to saline).

Conclusions

1) Scale up isolation of aaptamine (2) is best achieved through purification of water soluble extracts. 2) The mechanism of action for the in vivo anti-depressant-like and anxiolytic-like activity of 2 is mediated by it’s activity on the delta opioid receptor (DOR). 3) These data suggest that 2 can represent a novel chemical scaffold for the development of new DOR ligands in neurobiological research.

Acknowledgements

Financial support was provided by NIH grants RO1 CA 47135 (PC), RO1 AA 026040 (JW), International Cooperative Biodiversity Group (ICBG) grant no. 1310F/WWB08160 (JW, TJ), and by the Fletcher Jones Endowment Fund of Dominican University of California (TJ).

References

Figure 1. a) LC-MS library with annotations including m/z ions and b) comparative DOP agonist activity of the methanol extract LC fractions of coll. no. 92553 FM.

Figure 2. Extraction Scheme Flowchart of coll. no. 11308

Figure 3. a) Analytical traces LC (top) MS (bottom) of coll. no. 11308 WB and b) Preparative scale up HPLC traces of coll. no. 11308 WB fractions. Gradient: 10% → 100% CH3CN (45 min); [4.0 mg/100 µl] x 30 injections; λmax = 254 nm; sensitivity = 2.0 AU; flow 2.0 min/ul.

Figure 4. Chemical validation of aaptamine (2) using: a) LC-MS-ELSD analysis with annotations including m/z ions and b) 1H NMR data of 11308 WB H6.

Figure 5. Mice were injected with saline or aaptamine (2, 40mg/kg, i.p.) and subjected to: a) a forced swim test (a), a locomotor test (b) or a marble burying test (c).

Swiss strains litter 10m (in ambient light of 500-600lx) and were conducted in individual clear plastic cylinders (17.5cm tall × 25cm in diameter) filled with water (25°C, 40°C) to a depth of 20cm. A camera positioned on an angle to the cylinders recorded the sessions. Forced swimming was for a total invariable time during the last 30s of the session. Immobility was defined as the absence of movement, except that necessary to keep afloat. Following the test, mice were placed in a locomotor chamber to assess general locomotion for 30 minutes. For the marble burying test, mice were placed in a cage with 5 cm of wood shavings and 33 evenly spaced marbles for 20 minutes. At the end of the session, the number of marbles buried and exposed were counted. aaptamine (2) was effective in WT but not DOR knock out (KO) mice (* p<.05 compared to saline).