2015

Scale Up Isolation of Aaptamine for In Vivo Evaluation Indicates Its Neurobiological Activity isLinked to the Delta Opioid Receptor

Nicole L. McIntosh
Dominican University of California

Eptisam Lambo
Dominican University of California

Laura Millan-Lobo
University of California - San Francisco

Fei Li
University of California - San Francisco

Li He
University of California - San Francisco

See next page for additional authors

Survey: Let us know how this paper benefits you.

Recommended Citation

McIntosh, Nicole L.; Lambo, Eptisam; Millan-Lobo, Laura; Li, Fei; He, Li; Crews, Phillip; Whistler, Jennifer L.; and Johnson, Tyler, "Scale Up Isolation of Aaptamine for In Vivo Evaluation Indicates Its Neurobiological Activity is Linked to the Delta Opioid Receptor" (2015). *Student Research Posters*. 9.
https://scholar.dominican.edu/ug-student-posters/9
Scale up isolation of aaptamine for in vivo evaluation indicates its neurobiological activity is linked to the delta opioid receptor

Eptisam Lambo†, Nicole L. McIntosh†, Laura Millan-Lobo, Fei Li, Li-He, Phillip Crews, Jennifer L. Whistler and Tyler A. Johnson

1Department of Natural Sciences & Mathematics, Dominican University of California
2Department of Chemistry & Biochemistry, University of California, Santa Cruz
3Department of Neurology, University of California, San Francisco
†These authors contributed equally to this work

Introduction

Opioid receptors belong to the large superfamily of seven-transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. The Mu, Delta and Kappa (MOR, DOR, KOR) opioid receptors are particularly intriguing members of this receptor family as they are the targets involved in many neurobiological diseases such as addiction, pain, stress, anxiety, and depression. To date few marine natural products have been investigated for their neurobiological activities.1

One noteworthy example involves ziconotide (1) from the cone snail Conus magnus.2 Compound 1 was the first marine natural product approved by the FDA and is used for the treatment of pain, marketed under the trade name Prialt® (2004).3 More recently Hamman reported that aaptamine (2) is the first marine natural product to show in vivo antidepressant activity; however no mechanism of action was proposed.4 5 During a separate collaborative screening project we profiled 96 sponge-derived extracts and discovered demethyl-aaptamine (3) and demethyl (oxy) –aaptamine (4) were selective DOR agonists as shown in Fig. 1. We speculated that the in vivo activity for 2 could thus be linked to the DOR target and to test this hypothesis we conducted the following experiments below.

Experimental and Results

Our first step involved obtaining a source of aaptamine (2) for in vitro and in vivo evaluation. Compounds 3-4 were obtained from the sponge Aaptos aaptos (coll. no. 92553) but were devised of 2. LC-MS analysis of sponge coll. no. 11308 (A. aaptos) indicated m/z ions of 229 [M+H]+ consistent with that of 2 (not shown). We extracted coll. no. 11308 using a partition scheme shown in Fig. 2. The WB extract was enriched with 2 based on LC-MS data in Fig. 3a and used to scale up it’s isolation by HPLC shown in Fig. 3b. Chemical validation of pure 2 was confirmed by LC-MS and 1H NMR data in Fig. 4. This allowed us to screen 2 alongside 3 and 4 and confirm it’s DOR activity in vitro. In vivo evaluation indicated 2 was an antidepressant in wild type mice in the forced swim test (Fig. 5a, black bars) while having no effect on general locomotion (Fig. 5b). We further found that the antidepressant activity was abolished in genetically modified mice where the DOR gene was knocked out (Fig. 5a, red bars, DOR KO). We also found 2 was an anxiolytic in the marble burying test (Fig. 5c). These results indicate the anti-depressant activity previously reported for 2 is modulated by it’s activity of the delta opioid receptor.