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Abstract	

Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the 

treatment and prevention of malaria in Uganda. However, resistance to both components 

of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, 

the first-line regimen to treat malaria in Uganda, has also been excellent, but continued 

pressure may select for parasites with decreased sensitivity to lumefantrine. To gain 

insight into current drug sensitivity patterns, ex vivo sensitivities were assessed and 

genotypes previously associated with altered drug sensitivity were characterized for 58 

isolates collected in Tororo, Uganda from subjects presenting in 2016 with malaria from 

the community or as part of a clinical trial comparing DP chemoprevention regimens. 

Compared to community isolates, those from trial subjects had lower sensitivities to the 

aminoquinolines chloroquine, monodesethyl amodiaquine, and piperaquine, and greater 

sensitivities to lumefantrine and mefloquine, consistent with DP selection pressure. 

Compared to results for isolates from 2010-13, sensitivities of 2016 community isolates 

to chloroquine, amodiaquine, and piperaquine improved (geometric mean IC50s 248, 76.9, 

and 19.1 nM in 2010-13 and 33.4, 14.9, and 7.5 nM in 2016, respectively, P<0.001 for all 

comparisons), sensitivity to lumefantrine decreased (IC50 3.0 nM in 2010-13 and 5.4 nM 

in 2016, P<0.001), and sensitivity to dihydroartemisinin was unchanged (IC50 1.4 nM). 

These changes were accompanied by decreased prevalence of transporter mutations 

associated with aminoquinoline resistance and low prevalence of polymorphisms recently 

associated with resistance to artemisinins or piperaquine. Antimalarial drug sensitivities 

are changing in Uganda, but novel genotypes associated with DP treatment failure in Asia 

are not prevalent.
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Background	

Malaria	Burden	

Malaria has been evolving with humans for thousands of years, yet it remains a 

serious public health concern. According to the World Health Organization (WHO), there 

were approximately 216 million new cases and approximately 445,000 deaths from 

malaria worldwide in 2016. Eighty percent of the worldwide cases and 91% of the deaths 

occurred in Sub-Saharan Africa, with 99% of the estimated cases caused by Plasmodium 

falciparum, the most lethal of the human malaria species. Pregnant women and children 

under the age of five are the primary groups affected by malaria (1). Unfortunately, the 

majority of malaria cases are located in developing countries, where lack of resources 

hinders eradication efforts.  

 

Human	Malaria	Life	Cycle	

	 Malaria is a disease caused by single-cell protozoa from the phylum Apicomplexa, 

genus Plasmodium. There are five different species of Plasmodium that can infect and 

cause malaria in humans – P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, 

all of which require a mosquito host for sexual reproduction and a human host for asexual 

reproduction (Figure 1). Only female Anopheles species are suitable mosquito hosts for 

human malaria species. Once inside a mosquito the malaria gametocytes develop into 

gametes. A microgamete fuses with a macrogamete to produce a zygote. The zygote 

develops into a motile ookinete that penetrates the mosquito’s gut wall and develops into 

an oocyst on the hemocoel side of the gut. Via mitosis and meiosis, the oocyst turns into 
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sporoblasts, haploid nucleated masses, that divide to form motile sporozoites (2). The 

sporozoites break out of the oocyst, travel to the mosquito’s salivary glands, and lead to 

human infection when the mosquito takes a blood meal, injecting the sporozoites. The 

entire development in the mosquito takes approximately 10-12 days.  

 

 

Figure 1. The life cycle of human malaria species. The life cycle involves sexual 

reproduction in a female Anopheles mosquito and asexual replication in a human host. 

Image taken with permission from the CDC – DPDx Public Health Image Library (3). 

	

To initiate the human phase of the life cycle, an infected mosquito injects 

sporozoites via its saliva into the bloodstream while taking a blood meal. After the first 
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twenty-four hours in the blood stream, the sporozoites migrate to the liver where they 

invade hepatocytes in a ligand-receptor-mediated fashion (4). Once inside the hepatocyte, 

the malaria parasite goes through asexual reproduction, forming thousands of merozoites 

that exit the liver cells in about seven to ten days, depending on the species of malaria. 

The merozoites leave the liver and invade erythrocytes to initiate the asexual blood stage 

infection. Inside the erythrocyte, the parasite goes through a round of asexual replication 

that takes approximately 48 hours for P. falciparum and results in the rupture of the 

infected red blood cell, releasing up to 32 newly formed merozoites that subsequently 

infect new erythrocytes. The erythrocytic cycle is responsible for all clinical 

manifestations of malaria (5) and persists indefinitely. Some erythrocytic parasites 

develop into the sexual stages, the microgametocyte and the macrogametocyte. When a 

mosquito takes a blood meal from a human host that contains these gametocytes, the 

Plasmodium life cycle enters the invertebrate, sexual stage.  

 

Clinical	Falciparum	Malaria	

Patients with malaria can have varying degrees of symptoms, ranging from 

asymptomatic to severe, life-threatening complications. In uncomplicated malaria, 

patients exhibit nonspecific symptoms such as anemia, fever, malaise, headaches, body 

aches, and nausea (5). However, complicated or severe malaria can have lethal 

consequences because patients can develop metabolic acidosis, severe anemia, and 

cerebral malaria. P. falciparum is the most dangerous human malaria species because of 

its ability to cause complicated malaria by causing severe anemia and cytoadherance of 

infected red blood cells to the brain, heart, lungs, liver, kidneys, and placenta (6).  
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Even though the mechanism by which uncomplicated malaria progresses to 

complicated malaria is not fully understood, the ability of P. falciparum-infected 

erythrocytes to adhere to tissues appears to play a key role. Sequestration of infected red 

blood cells in the placenta can lead to hazardous conditions for the fetus and mother 

including maternal anemia, reduced birth weight, premature birth, and increased 

mortality of the newborn. Additionally, sequestration of infected red blood cells in the 

brain is hypothesized to play a role in cerebral malaria, which often leads to coma, brain 

damage, and/or death (7). Because of the danger P. falciparum poses to human health, it 

is imperative that useful, effective antimalarials are available for the treatment of the 

disease. 

 

Drug	Resistant	P.	falciparum	

It is essential to have potent, safe, and inexpensive antimalarials available for the 

treatment of malaria. Chloroquine, an antimalarial that gained popularity in 1950, was a 

game-changing drug for the treatment of malaria because it had minimal side effects, was 

efficacious, and was affordable. However after only a decade of widespread use, 

resistance originated from independent foci in Asia and South America that later spread 

throughout the world, rendering the drug useless (8, 9). Resistance to chloroquine and the 

structurally related drug amodiaquine, both of which are in the 4-aminoquinoline drug 

class, has been linked to mutations in the Plasmodium falciparum chloroquine resistance 

transporter (PfCRT) at position 76 and Plasmodium falciparum multi-drug resistance 

transporter 1 (PfMDR1) at positions 86 and 1246, which are both transmembrane 

proteins on the parasite digestive vacuole hypothesized to mediate the influx and efflux 
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of drugs (8, 10). In an effort to find a useful replacement, artemisinin-based combination 

therapies (ACTs) were developed (11).  

Currently, the first line therapies for uncomplicated P. falciparum infections are 

ACTs (12). Unlike chloroquine, the ACTs combine a fast acting artemisinin derivative 

with a slow acting partner drug, such as piperaquine, lumefantrine, mefloquine, 

amodiaquine, or pyronaridine, that work in combination to eradicate the malaria parasites 

in a patient. The artemisinin derivative is very potent and fast acting, so it kills the 

majority of the parasites in a patient’s blood stream quickly while the slow acting partner 

drug with a longer half-life stays in the patient longer and kills any remaining parasites 

(Figure 2) (13, 14). ACTs have proven to be efficacious and have a good safety record (1, 

12). 

 

 

Figure 2. Mechanism of action of ACTs. ACTs work by combining a fast acting 

artemisinin derivative with a slow acting partner drug to effectively kill all the parasites 

in a patient. Initially, the artemisinin kills the majority of the parasites in the patient and 

the partner drug kills the surviving parasites. New infections may occur once the slow-

acting partner drug concentration drops to sub-therapeutic levels.  

Drug Concentration 
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Parasite Density

Time

Artemisinin

Partner Drug

Parasite Density

New Infections



	

	

6	

Unfortunately, resistance to the artemisinin component of ACTs has developed in 

Southeast Asia (15, 16). Clinical artemisinin resistance is defined as a delayed clearance 

phenotype, meaning that it takes significantly longer for the drug to clear parasites. In a 

region of Cambodia with artemisinin resistance, it took on average 36 more hours to clear 

parasites with artesunate monotherapy compared to a region of Thailand without 

artemisinin resistance (16). The delayed clearance phenotype has been linked to single 

nucleotide polymorphisms (SNPs), specifically C580Y, R539T, Y493H, M476I, and 

I543T, in the kelch propeller domain of the protein encoded by the kelch k13 gene (15, 17, 

18). Because artemisinins are now failing in Southeast Asia, it is even more crucial to use 

combination therapies for the treatment of malaria. 

The partner drugs in ACTs can kill the parasites when the artemisinin fails, so 

combination therapies are a useful way to prevent drug resistance from emerging. Two or 

more drugs that target different biochemical pathways in the parasite would likely slow 

down the acquisition of drug resistance. Nevertheless, with ACTs the risk of developing 

resistance to the slow acting partner drug is serious if patients get re-infected during a 

time when there are sub-therapeutic levels of the partner drug present in their blood (11) 

(Figure 2). Additionally, now that artemisinin resistance is present in Southeast Asia, 

there is even more selective pressure on the partner drugs, and currently, drug resistance 

to the partner drugs piperaquine, mefloquine, and amodiaquine is present in Southeast 

Asia (19-22). 

Clinical dihydroartemisinin-piperaquine (DP) failure has recently developed in 

Southeast Asia and has been associated with increased plasmepsin 2 copy number in two 

studies and with an E415G encoding mutation in an exonuclease gene in one study (23, 
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24). DP failure is especially concerning because it has been shown to have excellent 

efficacy for the treatment of malaria and for malaria chemoprevention in both children 

and pregnant women in Africa (25-29). DP works well as a chemoprevention therapy 

because piperaquine has a long half-life (23 days [range 19-28 days] in adults and 14 

days [range 10-18 days] in children (30)), which helps protect patients from new malaria 

infections for a longer amount of time (Figure 2). Piperaquine, a bisquinoline, is an 

interesting drug because it is structurally similar to the 4-aminoquinolines chloroquine 

and amodiaquine, but its mechanism of action and selective pressures are not as well 

understood as they are for the other 4-aminoquinolines. 

Resistance to the partner drug mefloquine, an arylaminoalcohol, was first reported 

in 1982 (31), five years after it was introduced, and has been associated with increased 

pfmdr1 copy number in both in vitro and in vivo experiments (21, 32-34). Interestingly, 

resistance to the partner drug lumefantrine, which is an arylaminoalcohol-containing 

fluorene, has not been described to date. However similar to mefloquine, increased 

pfmdr1 copy number has been associated with decreased sensitivity to lumefantrine (21, 

32-34). Oppositely, an N86Y mutation in PfMDR1 has been shown to be associated with 

increased sensitivity to both of these drugs (35). Even though the exact mechanism by 

which these drugs act is uncertain, in vivo and in vitro studies have shown that decreased 

sensitivity to both drugs is mediated by the wildtype genotype at position 76 in PfCRT 

and positions 86 and 1246 in PfMDR1, which for the 4-aminoquinolines is associated 

with increased sensitivity (35-40). The arylaminoalcohols and 4-aminoquinolines exert 

opposite selective pressures on mediators of P. falciparum drug resistance.  
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Antimalarial	Use	in	Africa	

 Historically, chloroquine was used to treat uncomplicated malaria in Africa, but it 

has been replaced by the ACTs artemether-lumefantrine (AL) and artesunate-

amodiaquine (ASAQ) in most African countries. These ACTs are highly efficacious in 

Africa, with efficacy rates above 97% from 2010-2016 (1, 12). However, considering the 

fact that the vast majority of the world’s malaria and falciparum malaria cases occur in 

this region, it is pertinent to continue surveillance efforts to ensure the swift detection of 

resistance if or when it develops in Africa to facilitate the subsequent change of drug 

therapy policies. 

 

	Hypothesis	and	Rationale	

	 The work contained in this thesis was focused on studying the phenotypic and 

genotypic mechanisms of drug resistance present in clinical P. falciparum isolates from 

the Tororo District of Uganda (Figure 3). The Tororo District, located in the Southeastern 

part of Uganda, has a high burden of malaria and people were bitten by an average of 125 

infective mosquitoes per year in 2011-2012 (41). Uganda recently widely implemented 

AL as the national therapy for uncomplicated malaria after switching from chloroquine in 

2006. Our group collected a large amount of ex vivo drug sensitivity data and genetic data 

on P. falciparum clinical isolates from Tororo between 2010-2013 (40). Unsurprisingly 

because clinical chloroquine resistance was widespread, the study showed that a large 

proportion of P. falciparum isolates had decreased sensitivity to the 4-aminoquinolines 

and a high prevalence of SNPs associated with resistance to the 4-aminoquinolines. 
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When we returned to Tororo in 2016, we sought to study the current drug sensitivity 

phenotypes and genotypes present in P. falciparum isolates from the same location in the 

new setting of decreased chloroquine use and widespread AL use. We hypothesized that 

parasites in 2016 would differ significantly from those studied between 2010-2013 

because of the different drug therapies now used in the community. 

	

	

Figure 3. Map of Uganda. The red star indicates the location of the study site Tororo. 

Image taken with permission from Google Maps (Map data ©2017 Google). 
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ABSTRACT Dihydroartemisinin-piperaquine (DP) has demonstrated excellent effi-
cacy for the treatment and prevention of malaria in Uganda. However, resistance to
both components of this regimen has emerged in Southeast Asia. The efficacy of
artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also
been excellent, but continued pressure may select for parasites with decreased sen-
sitivity to lumefantrine. To gain insight into current drug sensitivity patterns, ex vivo
sensitivities were assessed and genotypes previously associated with altered drug
sensitivity were characterized for 58 isolates collected in Tororo, Uganda, from sub-
jects presenting in 2016 with malaria from the community or as part of a clinical
trial comparing DP chemoprevention regimens. Compared to community isolates,
those from trial subjects had lower sensitivities to the aminoquinolines chloroquine,
monodesethyl amodiaquine, and piperaquine and greater sensitivities to lumefan-
trine and mefloquine, an observation consistent with DP selection pressure. Com-
pared to results for isolates from 2010 to 2013, the sensitivities of 2016 community
isolates to chloroquine, amodiaquine, and piperaquine improved (geometric mean
50% inhibitory concentrations [IC50] ! 248, 76.9, and 19.1 nM in 2010 to 2013 and
33.4, 14.9, and 7.5 nM in 2016, respectively [P " 0.001 for all comparisons]), the sen-
sitivity to lumefantrine decreased (IC50 ! 3.0 nM in 2010 to 2013 and 5.4 nM in
2016 [P " 0.001]), and the sensitivity to dihydroartemisinin was unchanged (IC50 !
1.4 nM). These changes were accompanied by decreased prevalence of transporter
mutations associated with aminoquinoline resistance and low prevalence of poly-
morphisms recently associated with resistance to artemisinins or piperaquine. Anti-
malarial drug sensitivities are changing in Uganda, but novel genotypes associated
with DP treatment failure in Asia are not prevalent.

KEYWORDS Plasmodium falciparum, Uganda, artemether-lumefantrine,
dihydroartemisinin-piperaquine, drug resistance, ex vivo, k13, pfcrt, pfmdr1,
plasmepsin 2

With widespread resistance to older drugs, the World Health Organization currently
recommends artemisinin-based combination therapies (ACTs) as first-line treat-

ments for uncomplicated malaria in Africa, where ACTs remain highly efficacious
against Plasmodium falciparum, the most lethal and prevalent of the human malaria
species (1). ACTs combine a potent and fast acting artemisinin derivative with a longer-
acting partner drug, notably lumefantrine, piperaquine, amodiaquine, mefloquine, or
pyronaridine (2). Because the partner drugs circulate long after short-acting artemis-
inins have been cleared, resistance may be selected if patients are reinfected soon after
therapy.

For many years, malaria was treated principally with the aminoquinoline chloro-
quine. Resistance to chloroquine and its analogue amodiaquine is strongly associated
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with mutations in two putative drug transporters: PfCRT 76T and PfMDR1 86Y and
1246Y. Treatment with chloroquine and amodiaquine selects for these same mutations
(3, 4). Until recently, nearly all P. falciparum strains isolated in Uganda demonstrated
chloroquine resistance, as evidenced by poor chloroquine treatment outcomes (5), high
ex vivo half-maximal inhibitory (IC50) values (6, 7), and the near universal prevalence of
the transporter mutations noted above (8). In 2004, Uganda established the ACT
artemether-lumefantrine (AL) as the national therapy for uncomplicated malaria; im-
plementation was slow, but AL use is currently widespread, and it has demonstrated
excellent antimalarial efficacy (9, 10). AL selects for wild-type sequences at the same
alleles selected for mutations by aminoquinolines, and these wild-type sequences have
been associated with moderately decreased lumefantrine sensitivity (7, 11–13). Thus,
aminoquinolines and lumefantrine exert opposite selective pressures on P. falciparum
drug resistance mediators.

Although it is structurally related to chloroquine and amodiaquine, mediators of
resistance and selective effects of the bisquinoline piperaquine, a component of the
ACT dihydroartemisinin-piperaquine (DP), are less certain. In Africa, DP has shown
excellent efficacy for the treatment of malaria (14, 15) and for malaria chemoprevention
in children (16, 17) and pregnant women (18). For chemoprevention, DP benefits from
the long half-life of piperaquine, but the impacts of this regimen on the selection of
drug resistance are uncertain. Use of DP as therapy (19) or chemoprevention (20) was
not associated with selection of the pfcrt and pfmdr1 mutations selected by other
aminoquinolines in Burkina Faso, but in Uganda, DP treatment (12) and chemopreven-
tion (7, 17) was followed by selection of parasites with increased prevalence of
aminoquinoline resistance-mediating mutations, although selection of different muta-
tions varied among the studies.

Artemisinin resistance emerged in Southeast Asia over the last decade, manifesting
as delayed parasite clearance after therapy and causally linked to mutations in the k13
gene (PF3D7_1343700) (21–23). More recently, resistance to piperaquine also emerged
in Southeast Asia, linked to an increased plasmepsin 2 (PF3D7_1408000) copy number
(24, 25) and, in one study, an E415G mutation in an exonuclease (encoded by
PF3D7_1362500) (24). In the same region, amplification of the pfmdr1 gene has been
linked to decreased sensitivity to mefloquine and lumefantrine but increased sensitivity
to aminoquinolines (26, 27). However, pfmdr1 gene amplification appears to be very
uncommon in P. falciparum in Africa.

Considering recent changes in malaria treatment practices in Uganda, we investi-
gated changes in drug sensitivity. We analyzed the drug susceptibility phenotypes and
genotypes of clinical P. falciparum isolates collected from two sources in 2016 and
compared them to the characteristics of isolates collected in prior years. We found
marked changes in drug susceptibilities over time that were consistent with decreased
selective pressure from chloroquine and/or increased selective pressure from the national
treatment regimen AL.

RESULTS
P. falciparum isolates. Isolates were collected from May to July 2016 from subjects

with uncomplicated malaria from two sources: 29 children and adults from the com-
munity (mean age, 4.7 years; range, 1 to 21 years) diagnosed at Tororo District Hospital
and 29 children (mean age, 1.4 years; range, 1.2 to 1.5 years) enrolled in a trial
comparing two different regimens of DP (monthly or every 3 months) for the preven-
tion of malaria.

Comparative ex vivo drug sensitivities. We compared ex vivo drug sensitivities
between samples from community members and trial subjects. Samples from trial
subjects were significantly less sensitive to the aminoquinolines chloroquine, monodes-
ethyl amodiaquine (the active metabolite of amodiaquine), and piperaquine; were
significantly more sensitive to lumefantrine and mefloquine; and had no difference in
sensitivity to dihydroartemisinin (DHA), atovaquone, or pyronaridine (Table 1). These
results were consistent with selection by DP in trial subjects for decreased aminoquino-

Rasmussen et al. Antimicrobial Agents and Chemotherapy
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line sensitivity in parasites that emerged despite chemoprevention. We then compared
results for samples collected in 2016 to those for samples collected at the same study
site from 2010 to 2013 (7). Parasites collected from the community in 2016 were more
sensitive to the tested aminoquinolines but less sensitive to lumefantrine than the
samples collected earlier (Table 1).

Because the standard 72-h IC50 assay does not identify DHA resistance in Southeast
Asian parasites (28), the ex vivo ring-stage survival assay, in which parasites are exposed
to a 6-h pulse of 700 nM DHA, was performed on 16 samples collected from the
community and 16 samples collected from trial subjects in 2016. Seven of the com-
munity samples had undetectable parasites at 72 h, and the remaining nine samples
had median parasitemia of 0.5% that of controls. For the trial samples, seven had
undetectable parasites at 72 h, and the remainder had median parasitemias that were
0.6% those of controls. Our results were similar to those for parasites collected in

TABLE 1 Ex vivo drug sensitivity of P. falciparum isolates collected from 2010 to 2013 and in 2016 from trial and community patientsa

Drug
Source and/or
study period (yr)

No. of
samples

Geometric
mean IC50

(nM)
95% CI
(nM)

IC50 range
(nM)

P value

2010 to 2013
vs 2016 trial

2010 to 2013
vs 2016
community

2016 trial vs
2016
community

Chloroquine Dd2 7 209 180–242 155–240
3D7 7 9.2 7.9–10.8 6.7–11
2010–2013 408 248 223–275 31.0–1,400 !0.001 !0.001 !0.001
2016, trial 25 57.1 32.7–99.6 12.4–727
2016, community 24 33.4 19.8–56.2 8.7–318

Monodesethyl
amodiaquine

Dd2 7 35.5 25.8–48.8 25–61
3D7 7 5.4 4.7–6.3 4.1–6.2
2010–2013 421 76.9 70.2–84.1 12.5–565 !0.001 !0.001 !0.001
2016, trial 20 20.6 15.0–28.4 7.5–91.8
2016, community 24 14.9 10.6–21.0 4.6–70.4

Piperaquine Dd2 7 4.4 2.6–7.3 1.8–9.6
3D7 7 3.7 2.6–5.2 2–6.4
2010–2013 381 19.1 17.1–21.4 3.1–189 !0.001 !0.001 0.05
2016, trial 25 8.6 6.5–11.2 1.8–26.6
2016, community 25 7.5 6.0–9.3 2.7–20.5

Lumefantrine Dd2 7 1.8 1.4–2.4 1.3–2.7
3D7 7 3.4 3.0–3.7 2.7–3.7
2010–2013 378 3.0 2.6–3.3 0.4–24.4 0.52 !0.001 !0.001
2016, trial 24 3.4 2.6–4.5 0.6–11.6
2016, community 25 5.4 4.3–6.9 1.8–23.7

Dihydroartemisinin Dd2 7 0.8 0.5–1.3 0.5–2.1
3D7 7 0.9 0.6–1.5 0.6–2.2
2010–2013 442 1.4 1.3–1.5 0.3–16.9 0.52 0.94 0.55
2016, trial 25 1.7 1.4–2.2 0.5–4.4
2016, community 24 1.4 1.2–1.7 0.4–3.9

Atovaquone Dd2 7 0.2 0.1–0.3 0.1–0.3 0.97
3D7 7 0.1 0.1–0.2 0.1–0.2
2016, trial 18 0.5 0.4–0.6 0.2–1.0
2016, community 22 0.5 0.4–0.6 0.1–1.0

Mefloquine Dd2 7 10.2 7.2–14.4 6.7–20 !0.001
3D7 7 9.0 6.9–11.6 6.4–14
2016, trial 20 18.8 15.6–22.8 5.9–33.6
2016, community 24 21.2 18.5–24.4 8.9–41.7

Pyronaridine Dd2 7 1.8 0.9–3.8 0.7–6.0 0.69
3D7 7 1.0 0.8–1.4 0.6–1.6
2016, trial 24 2.5 1.8–3.5 0.7–29.1
2016, community 23 2.2 1.5–3.3 0.2–10.1

aGeometric mean IC50s for each group were compared using t tests. Dd2 and 3D7 are laboratory control strains. Data from 2010 to 2013 were published previously (7).
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Kampala, Uganda, in 2014 (29) and contrasted with those for DHA-resistant parasites
from Southeast Asia, in which 72-h parasitemias were much higher (median 13.5% that
of controls in isolates from a region of Cambodia with frequent artemisinin resistance
[30]). Thus, we did not see evidence for ex vivo artemisinin resistance in Ugandan
parasites.

Piperaquine resistance in Southeast Asia has been accompanied by irregular dose-
response curves, necessitating establishment of novel methods for determining ex vivo
drug sensitivity (31). It was thus important to confirm reliable determination of piper-
aquine sensitivity by our methods. Standard 72-h growth inhibition assays yielded
sigmoidal dose-response curves that were reproducible and readily interpretable (Fig.
1). Thus, in contrast to the case for Southeast Asian isolates resistant to piperaquine,
standard IC50 determinations were deemed valid for the Ugandan isolates.

Polymorphisms in parasite drug resistance markers. Prevalences of polymorphisms
in putative transporters that are associated with sensitivity to a number of antimalarials
were compared between P. falciparum isolates from 2010 to 2013 and isolates from
2016. Consistent with previous trends (7, 8, 12, 32), genotypes have changed markedly
in recent years, with reversion to wild-type sequences at pfcrt K76T (P ! 0.001) and
pfmdr1 N86Y (P ! 0.01) and D1246Y (P " 0.095) (Fig. 2). Nonsignificant trends toward
greater prevalence of wild-type pfcrt K76 and pfmdr1 N86 sequences in community
compared to trial samples were also seen, an observation consistent with selective
pressure from DP in trial subjects. Sensitivity to some drugs is also altered by amplifi-
cation of pfmdr1, but this phenomenon has been uncommon in African parasites. All 58
samples collected in 2016 had only one copy of pfmdr1.

Sequencing of the propeller-encoding domain of k13, where certain mutations are
strongly associated with artemisinin resistance in Southeast Asia, identified a single-
nucleotide polymorphism (SNP) in 1 of 29 community samples that corresponded to an
A578S mutation and a mixed wild-type/A578S genotype in 1 of 27 trial samples. The
A578S mutation has been described in isolates from Uganda and other African coun-
tries, and it has not been associated with artemisinin resistance (29, 32, 33).

FIG 1 Representative piperaquine (PQ) growth inhibition curves for four different P. falciparum isolates
collected in 2016.
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Recent reports have identified amplification of a gene encoding plasmepsin 2 and
a SNP in an exonuclease gene (PF3D7_1362500) that encodes an E415G mutation as
markers of piperaquine resistance in Southeast Asia (24, 25). We assessed the preva-
lence of these polymorphisms in Ugandan parasites. First, we assessed the plasmepsin
2 (PF3D7_1408000) copy number in samples collected in 2010 to 2013, when piper-
aquine sensitivity varied more widely in Tororo (Table 1) (7), stratifying parasites with
piperaquine IC50s above or below 50 nM. Second, we assessed the plasmepsin 2 copy
number in samples collected in 2016. For all three sets of samples, we identified
increased copy number in 10 to 14% of samples, but there was no apparent association
between increased copy number and piperaquine sensitivity (Table 2). Third, we

FIG 2 Allele prevalence over time. Wild-type, mixed, and mutant allele prevalences are indicated for the
2010 to 2013 trial and the 2016 trial and community samples. Univariate analysis using generalized
estimating equations with exchangeable correlations was used to determine significance of genotype
changes over time. Asterisks indicate significance of comparisons between wild-type and mixed/mutant
prevalences for the indicated samples (P ! 0.01 [**] and P ! 0.001 [***]). Allele prevalences from 2010 to
2013 were published previously (7).

TABLE 2 plasmepsin 2 copy number among samples collected from 2010 to 2013 and in
2016a

Sample period (yr) n PQ IC50 (nM)
No. of samples (%) with increased
plasmepsin 2 copy no.

2010–2013 36 !50 4 (11.1)
22 "50 3 (13.6)

2016, trial 29 !50 3 (10.3)
2016, community 29 !50 4 (13.8)
aThe copy number was considered increased when measured at "1.6 copies. n, total number of samples;
PQ, piperaquine.

Changing Antimalarial Drug Sensitivities in Uganda Antimicrobial Agents and Chemotherapy

December 2017 Volume 61 Issue 12 e01516-17 aac.asm.org 5

 

Table	2.	plasmepsin	2	copy	number	among	samples	collected	from	2010	to	2013	and	in	2016. Figure	5.	Allele	prevalence	over	time.	



	

	

16	

	

sequenced the exonuclease gene in 29 community samples and 27 trial samples
collected in 2016, as well as the same 58 samples from 2010 to 2013 for which we
assessed plasmepsin 2 copy number. The exonuclease E415G mutation was not seen in
any of the samples. However, two different SNPs were detected in the 2010 –2013
samples, and five different SNPs were detected in the 2016 samples. Five of the seven
polymorphisms were nonsynonymous, encoding (i) a D360E mutation (from 2012), (ii)
a Y365C mutation (2016 community), (iii) a V352A mutation (2016 trial), (iv) a set of
seven nonsynonymous SNPs (N369D, K371N, V372D, N373K, and N374V mutations;
2016 trial), and (v) a 24-base-pair insertion corresponding to 8 amino acids (DNDKVN
NN), starting at position 376 (2016 community).

Associations of ex vivo drug sensitivity with transporter polymorphisms. We
and others have previously shown that polymorphisms in the putative transporters
pfcrt and pfmdr1 are associated with altered ex vivo drug sensitivity (7, 12, 34–38). We
tested for associations between pfcrt K76T and pfmdr1 N86Y, Y184F, and D1246Y
polymorphisms, and the ex vivo drug sensitivities were determined for samples col-
lected in 2016 (Fig. 3). Consistent with previous reports (7, 34, 35), decreased sensitivity
to chloroquine, monodesethyl amodiaquine, and pyronaridine and increased sensitivity
to lumefantrine and mefloquine were associated with the mutant pfcrt 76T and pfmdr1
86Y sequences (Fig. 3) (36). Interestingly, consistent with prior reports (7, 37), the
associations seen for other aminoquinolines were not seen for piperaquine. Associa-
tions with other polymorphisms and for other drugs were mostly not significant.

DISCUSSION
We characterized ex vivo drug sensitivities and molecular markers associated with

drug sensitivity for P. falciparum isolates collected in Tororo, Uganda, in 2016. Sensi-
tivities to aminoquinolines and other components of standard ACTs differed between
isolates from the community and those receiving regular DP in a chemoprevention trial,
suggesting selective pressure of piperaquine for aminoquinoline resistance. More
notably, sensitivities to these drugs differed markedly compared to results for isolates
collected in 2010 to 2013 (7). Specifically, sensitivities to aminoquinolines have in-
creased and sensitivity to lumefantrine has decreased, which is consistent with the

FIG 3 Associations of ex vivo geometric mean IC50s with the indicated polymorphisms. “N” represents the number of samples with wild-type (wt), mixed (mix),
or mutant (mut) genotypes. The geometric mean IC50s for the wild-type genotype were compared to other genotypes using t tests, with the significance noted
(P ! 0.05 [*], P ! 0.01 [**], and P ! 0.001 [***]).
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selective pressure of AL, the national malaria treatment regimen. These changes were
accompanied by decreased prevalence of well-characterized transporter mutations
(PfCRT 76T, PfMDR1 86Y, and 1246Y) associated with aminoquinoline resistance but not
by an increased prevalence of polymorphisms recently associated with resistance to
artemisinins or piperaquine. Thus, antimalarial drug sensitivities are changing in
Uganda, most remarkably with reversion to aminoquinoline sensitivity, and genotypes
associated with ACT treatment failure in Asia are not prevalent.

Uganda changed from chloroquine-based regimens to AL for the treatment of
malaria, with implementation beginning in 2006 (39). Replacement of chloroquine by
other regimens has been followed by changes in drug sensitivity in other countries. In
Malawi, after discontinuation of chloroquine, the prevalence of the PfCRT 76T mutation,
which is the primary mediator of chloroquine resistance (38), decreased markedly (40),
followed by excellent treatment efficacy for chloroquine (41). In Uganda, ex vivo
evidence of chloroquine resistance (IC50 ! 50 to 100 nM) was common in isolates
collected from 2006 to 2008 in Kampala (6) and from 2010 to 2013 in Tororo (7),
findings consistent with a high prevalence of the PfCRT 76T mutation (3, 42). This
situation changed in Tororo most notably beginning in 2012, with increasing preva-
lence of the pfcrt K76 wild-type genotype and decreasing chloroquine ex vivo IC50s (7,
8). Our data from 2016 show that this trend has continued, with— based on both
parasitological and genetic assessments—the majority of parasites being sensitive to
chloroquine and amodiaquine. The replacement of aminoquinoline-resistant parasites
by sensitive parasites has been accompanied by reemergence of wild-type sequences
at pfmdr1 86 and 1246 and by decreases in the ex vivo sensitivity to lumefantrine.
However, the majority of malaria infections in Uganda are likely polyclonal. Minority
clones may persist, allowing rapid selection of parasites with altered sensitivity when
certain drugs are used, as seen in Malawi with the discontinuation of chloroquine (40)
and in Uganda where treatment with artesunate-amodiaquine or AL selected for
different genotypes in new infections emerging after therapy (43). The changes hap-
pening in Uganda have likely been driven by both decreased selective pressure from
chloroquine and increased selective pressure from lumefantrine.

For the aminoquinolines chloroquine and amodiaquine, resistance is linked to
mutations in pfcrt and, to a lesser extent, pfmdr1, and use of these drugs selects for the
same mutations (3, 4, 34, 35, 44). However, associations are less straightforward for the
related bisquinoline piperaquine. With the use of DP for the treatment or prevention of
malaria in Uganda, selection in parasites that emerged after therapy was consistently
seen for PfMDR1 86Y, but selection at other alleles was inconsistent (7, 12, 17). In the
present study, samples from the DP chemoprevention trial had decreased sensitivity to
chloroquine, monodesethyl amodiaquine, and piperaquine, increased sensitivity to
lumefantrine and mefloquine, and an increased prevalence of the PfCRT 76T and
PfMDR1 86Y mutations; all of these findings are consistent with a selective pressure of
piperaquine, as seen previously for chloroquine (38) and amodiaquine (4, 45). However,
in contrast to the results for chloroquine and amodiaquine, the ex vivo drug sensitivities
for piperaquine were not clearly linked to the prevalences of pfcrt and pfmdr1 poly-
morphisms (7; the present study). The reasons for the differences in results for different
aminoquinolines are uncertain; the larger size of piperaquine may lead to decreased
impact of transporter mutations on sensitivity to this drug. In any event, it appears that
the widespread use of DP for malaria chemoprevention will select for parasites with
decreased sensitivity to aminoquinolines but increased sensitivity to lumefantrine.

Of great concern is the identification of artemisinin resistance within the last decade
and of piperaquine resistance very recently in Southeast Asia (22, 24, 25, 46). Important
advances from groups in Asia have identified parasitological (30, 31) and molecular (21,
23–25) markers of resistance to these drugs which, when seen together, have been
accompanied by high rates of treatment failure with DP (31, 47). We utilized these new
tools to characterize parasites circulating in Tororo in 2016. As seen in prior studies from
Uganda, occasional k13 mutations were seen (12, 29, 33), but these were not the
mutations associated with artemisinin resistance in Southeast Asia, and prevalence was
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not associated with drug sensitivity or recent drug pressure. In addition, as seen
recently in parasites from Kampala (29), the ex vivo DHA ring survival assay did not
suggest artemisinin resistance in Ugandan parasites. Similarly, an increase in plasmepsin
2 copy number, a newly identified marker associated with piperaquine resistance, was
also seen occasionally in Ugandan isolates, but it was not associated with piperaquine
sensitivity in recent isolates or in a comparison of older isolates with relatively high or
low piperaquine sensitivity. Overall, we did not see evidence suggesting that resistance
to artemisinins or piperaquine has emerged in Uganda.

Changes in antimalarial drug use have been accompanied by marked changes in the
drug sensitivity of malaria parasites around the world. Our new results demonstrate
marked recent changes in Ugandan parasites with, for the most part, a return to
sensitivity to chloroquine and amodiaquine. Parasites have also shown some loss of
sensitivity to lumefantrine, a component of the national treatment regimen, but it is
unlikely that this slight change, although statistically significant, will impact AL treat-
ment efficacy. Considering markers for resistance to artemisinins and piperaquine, our
results are reassuring, without evidence for emergence of the worrisome ACT resistance
seen in southeast Asia. Resistance to different antimalarial regimens has developed
more slowly in Africa than in other regions, likely due to strong antimalarial immunity
in Africans living in high-transmission areas, and yet it is extremely important to limit
resistance spread. Our results are consistent with other recent studies in suggesting
that the continued use of AL to treat malaria and the institution of DP for chemopre-
vention will exert opposite selective resistance pressures and thus may offer an optimal
means for maintaining antimalarial treatment and chemopreventive efficacy while
limiting the spread of drug resistance.

MATERIALS AND METHODS
Sample collection. P. falciparum isolates were obtained from May to July 2016 from two sources in

Tororo, Uganda. First, children and adults presenting at the Tororo District Hospital outpatient clinic with
malaria (temperature ! 37.5°C axillary or history of fever in the previous 24 h and a positive Giemsa-
stained blood smear for P. falciparum) and without signs of severe disease were enrolled after informed
consent. Second, children enrolled in a clinical trial (registered at ClinicalTrials.gov [NCT02163447])
comparing monthly versus every 3-month intermittent therapy with DP to prevent malaria provided
samples if they presented to the study clinic with uncomplicated malaria (defined as above). The studies
were approved by the Makerere University Research and Ethics Committee, the Uganda National Council
for Science and Technology, and the University of California, San Francisco Committee on Human
Research. All subjects were treated with AL after sample collection.

Sample collection and parasite culture. Blood was collected before therapy in a heparinized tube.
Parasitemia was determined with Giemsa-stained thin smears. Samples containing only P. falciparum and
with a parasitemia of !1% were selected for culture. Initiation of culture was performed as previously
described (6), with slight modifications. Briefly, blood was centrifuged, plasma and buffy coat were
removed, and the erythrocyte pellet was washed three times with RPMI 1640 medium prewarmed to
37°C. The pellet was resuspended in complete media (RPMI 1640 medium supplemented with 25 mM
HEPES, 0.2% NaHCO3, 0.1 mM hypoxanthine, 10 "g/ml gentamicin, and 0.5% AlbuMAX II serum
substitute) to produce a 50% hematocrit. Culture aliquots were spotted onto Whatman 3MM filter paper
for molecular studies.

Ex vivo determination of drug susceptibilities. Drug susceptibilities were assessed immediately or
from samples stored at 4°C for a maximum of 18 h. Drug sensitivities were determined for chloroquine
(Sigma-Aldrich), monodesethyl amodiaquine (BD Gentest), piperaquine (Jinan Jiaquan International
Trade Co., Ltd.), lumefantrine (Sigma-Aldrich), dihydroartemisinin (DHA; TCI Tokyo Chemical Industry),
mefloquine (Sigma-Aldrich), atovaquone (Sigma-Aldrich), and pyronaridine (Santa Cruz Biotechnology)
using a 72-h, 96-well microplate fluorescence assay with SYBR green I detection as described previously
(48). Drugs were validated by regular IC50 assessment with laboratory strains Dd2 and 3D7, which yielded
results similar to those seen previously (7). Drugs were prepared as 10 mM stocks in dimethyl sulfoxide
or water and stored at !20°C. For assays, fresh drug stocks were prepared in complete media by diluting
chloroquine to 20 "M; piperaquine, monodesethyl amodiaquine, and mefloquine to 4 "M; lumefantrine
to 0.8 "M; and dihydroartemisinin, atovaquone, and pyronaridine to 0.4 "M. Drugs were serially diluted
3-fold in complete medium in 96-well microplates, with inclusion of drug-free control wells, to final
volumes of 50 "l/well. Parasite culture was added for a total volume of 200 "l/well with a 0.2%
parasitemia at 2% hematocrit. Plates were maintained under a gas mixture of 5% CO2, 5% O2, and 90%
N2 for 72 h at 37°C in a modular incubator (Billups Rothenberg, Del Mar, CA). Plates were frozen at !80°C
and thawed, wells were mixed, and 100 "l from each well was transferred to a black 96-well plate
containing 100 "l/well SYBR green lysis buffer (20 mM Tris buffer, 5 mM EDTA, 0.008% saponin, 0.08%
Triton X-100, and 0.2 "l/ml SYBR green I). Plates were incubated for 1 h in the dark at room temperature,
and the fluorescence was measured with a FLUOstar Omega plate reader (BMG LabTech, Inc., Cary, NC;
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485-nm excitation/530-nm emission). IC50s were derived by plotting percent growth against log drug
concentration and fitting the data by variable slope, sigmoidal curve fit in Prism 6.0 (GraphPad Software,
San Diego, CA). DHA drug susceptibility was measured with an ex vivo ring stage survival assay as
previously described (29).

Characterization of parasite polymorphisms. Parasite DNA was extracted from filter paper blood
spots using Chelex-100, genes of interest were amplified with nested PCR, and polymorphisms in pfcrt
and pfmdr1 were evaluated using a ligase detection reaction-fluorescent microsphere assay, all as
previously described (12, 49). pfmdr1 copy number was determined in quadruplicate using a TaqMan
real-time PCR assay with 3D7 and Dd2 strain standards, as previously described (12, 50). The k13-
propeller-encoding domains (codons 440 to 726; PF3D7_1343700) (21) and an exonuclease gene
(PF3D7_1362500) (24) were amplified and sequenced using previously described methods and primers.
For the exonuclease gene, samples that failed the initial round of PCR were amplified using nested PCR
with sequencing primers as previously described (24). Sequences were aligned with the 3D7 sequence
(PlasmoDB.org) using MacVector v.15 (MacVector, Inc., Apex, NC). SNPs were confirmed by inspection of
individual chromatograms. The plasmepsin 2 copy number was quantified using a previously published
quantitative PCR method (25). Amplification of plasmepsin 2 was defined as !1.6 copies.

Statistical methods. Data analysis was performed using Stata v.14 (StataCorp LLC, College Station,
TX). Significant differences between ex vivo IC50s were characterized with t tests. Univariate analysis using
generalized estimating equations with exchangeable correlations was used to determine significance of
genotype changes over time. Associations between genotype and drug sensitivity were determined by
comparing wild-type and mixed/mutant genotypes using t tests. Differences were considered significant
at P values of !0.05.

Accession number(s). Nucleotide sequence data are available in the GenBank database under
accession numbers MF477020 to MF477187.
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Concluding	Remarks	

	 The drugs used to treat uncomplicated falciparum malaria impact the drug 

sensitivities and genotypes of the malaria parasites infecting humans. Our results from 

Uganda show that sensitivity to the 4-aminoquinolines is returning while sensitivity to the 

arylaminoalcohols has decreased. The decreased sensitivity to the arylaminoalcohols does 

not appear to be clinically relevant. Importantly, there is no apparent resistance to ACTs. 

Having potent and efficacious drugs is crucial, so it is important to continue parasite 

surveillance efforts to track changing drug susceptibility and molecular markers of 

resistance among field isolates. This information will help determine if current and past 

drug therapies are becoming more or less potent over time, which will aid decision 

making on what drug therapies should be used. Parasite surveillance is a key method to 

managing the ever-present threat of antimalarial drug resistance.  
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