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Regressive Evolution in the Mexican Cave Tetra, Astyanax
mexicanus

Meredith Protas1,◆a, Melissa Conrad2, Joshua B. Gross1, Clifford Tabin1, and Richard
Borowsky2,*

1 Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA

2 Department of Biology, New York University, New York, NY, 10003, USA,

Summary
Cave adapted animals generally have reduced pigmentation and eyes, but the evolutionary forces
driving the reductions are unknown; Darwin famously questioned the role of natural selection in eye
loss in cave fishes; “As it is difficult to imagine that eyes, although useless, could be in any way
injurious to animals living in darkness, I attribute their loss wholly to disuse” [1]. We studied the
genetic basis of this phenomenon in the Mexican cave tetra, Astyanax mexicanus, by mapping the
quantitative trait loci (QTL) determining differences in eye/lens sizes and melanophore number
between cave and surface fish. In addition, we mapped QTL for the putatively constructive traits of
jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation
regressed through different mechanisms. Cave alleles at each eye/lens QTL we detected caused size
reductions. This uniform negative polarity is consistent with evolution by natural selection and
inconsistent with evolution by drift. In contrast, QTL polarities for melanophore number were mixed,
consistent with evolution by genetic drift or indirect selection through pleiotropy. Past arguments
against a role for selection in regression of cave fish eyes cited the insignificant cost of their
development [2,3], but we argue that the energetic cost of their maintenance is sufficiently high for
eyes to be detrimental in the cave environment. Regression, a ubiquitous aspect of all evolutionary
change, can be caused either by selection or genetic drift/pleiotropy.

Results and Discussion
Absence of light drives the evolution of cave animals towards a suite of characteristic, cave-
related (troglomorphic) phenotypes. In the dark, eyes and pigmentation lose their functions,
and tend over the generations to regress or disappear. Without light there is no photosynthesis,
and the trophic base of many cave communities is narrow. Cave animals typically cope with
the scarcity of food by evolving more sensitive tactile and chemical senses and slower or more
efficient metabolisms. Compensatory changes like these probably evolve because of strong
selection, but what causes the regression of eyes and pigmentation? The three modern
competing hypotheses for eye regression are natural selection, recurrent mutation/genetic drift,
and pleiotropy [2].
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Astyanax mexicanus is an ideal species to study the genetics of troglomorphy because it has
both eyed surface and cave adapted populations, all of which are interfertile. Cave fish were
collected from Pachón cave in NE Mexico [locality map in 4] and surface fish were collected
from nearby streams (Supplemental Fig. 1). We hybridized Pachón cave and surface fish,
creating a mapping progeny of 539 F2 siblings. We mapped 178 loci in the cross (2191 cM)
for an average distance between adjacent markers of 14.7 cM. We phenotyped the F2 fish by
measuring eye size, lens size, counting the density of melanophores in four places on the bodies,
measuring the lengths of the dentary and maxillary bones in the jaw apparatus, and counting
maxillary teeth and taste buds (Table 1 lists sample sizes for the different traits). This gave us
a set of standardized phenotypes that could be correlated with genotypes. Phenotypic and
genotypic data (see Supplemental Online Material) were used to identify chromosome regions
where genes affecting the traits were located. Quantitative trait loci (QTL) were detected in
two phases, first by simple interval mapping (SIM) of putative QTL, followed by a refinement
phase using multiple interval mapping algorithms (MIM). We used MultiQTL software
(www.multiqtl.com), with P < 0.05 and a false detection rate < 0.10. (Supplemental Online
Material details Material and Methods.)

With few exceptions, phenotypic correlations among traits in the F2 are weak or non-existent
(Table 1). Not all correlations could be determined because some traits (notably lens sizes)
were assessed in different siblings but, of the 26 correlations we calculated, only six were
significant at the P = 0.01 level, and three others at the P = 0.05 level. Eye size was significantly
negatively correlated with three melanophore traits and the number of maxillary teeth and
positively correlated with lens size. MelE and MelD were strongly correlated, and the length
of the maxillary bone was significantly correlated with the length of the dentary and the number
of taste buds. It is notable that eye size was not significantly correlated with the lengths of the
dentary or maxillary or number of taste buds.

We detected 48 QTL for these traits: eight affecting eye size, six affecting lens size, 18 affecting
pigmentation, seven affecting lengths of the jaw bones, six affecting the number of maxillary
teeth, and three affecting the number of taste buds (Table 2). The total proportions of variance
explained by QTL for each trait ranged from 0.11 to 0.77 (mean = 0.44) and the total proportions
of additive variance explained ranged from 0.03 to 0.52 (mean = 0.28).

Some of the QTL co-mapped and might represent the effects of single genes or tightly clustered
genes (Supplemental Fig. 2). On LgP7, LgP9, and LgP15, there were two, four and two co-
mapping QTL for different melanophore traits. On LgP8 and LgP20, QTL for eye and lens
size co-map. Because of the possibility that these sets of co-mapping QTL each represent single
loci, for statistical comparisons of eye and melanophore QTL we counted each region only
once. On LgP13 QTL for maxillary size and number of maxillary teeth co-map. While these
may represent one gene, the polarities of substitution effects are in disagreement, with smaller
maxillae associated with more teeth. On LgP27, QTL for eye size and number of maxillary
teeth co-map. On LgP5 and LgP25, QTL for eye or lens size co-map with QTL for taste-buds.
Other examples of co-mapping traits can be seen in Supplemental Figure 2.

Trait means (μ), and estimates of allelic substitution (d) and heterozygous effects (h) are given
in Table 2. Expected trait values for cave and surface homozygotes and heterozygotes are μ +
d, μ − d, and μ + h, respectively. We calculated trait values for all 48 QTL and identified loci
at which the heterozygote fell between the two homozygotes as intermediate in dominance.
Based on this criterion, 36 of the cave alleles are of intermediate dominance. The remaining
12 loci cannot be classified unambiguously because the standard errors of estimate sometimes
exceeded the differences in trait values among genotypes, but at four of the loci the cave allele
seems recessive, at two it seems dominant, and at two more it seems clearly overdominant. We
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calculated a measure of dominance as the absolute value of the ratio of h/d and found the median
value to be 0.44, or semi-dominant.

In order to compare patterns of substitution between eye/lens and melanophore QTL, the two
regressive trait classes, we calculated trait values for all three genotypes at each QTL using
estimates of d, h, and μ. To standardize the scales, we divided expected trait values by their
trait means. In the three cases in which two or more melanophore QTL co-mapped and it was
possible that single genes were affecting multiple traits, the scaled trait values were averaged
for each genotypic class. This reduced the number of melanophore QTL to 13 for statistical
testing. In the two cases where eye and lens QTL co-mapped, we chose the one with the higher
LOD score to represent the QTL.

The patterns of substitution effects differ radically between QTL for eye/lens size and
melanophore numbers. Cave alleles at all 12 eye/lens QTL effect relatively modest, but steady
decreases of eye/lens size (Fig. 1a). In contrast, cave alleles at QTL affecting melanophore
number have positive (n = 5), as well as negative slopes (n = 8), and their substitution affects
are much larger (Fig. 1b). The distributions of polarities differ significantly between the two
classes of traits (12:0 vs. 8:5, 2-tail P = 0.039, Fisher’s exact test). Comparison of the slopes
for the two trait classes (Fig. 1) also reveals an obvious difference in dispersion (Wilcoxon
two-sample statistic for testing homogeneity of variances, R11,13 = 186, P = 0.005).

Our interpretation of these differences in effects between the two classes is that regression of
eyes came about primarily through selection, while decreases in numbers of melanophores
resulted mainly from recurrent mutation/genetic drift or indirectly through pleiotropy. If there
were strong direct selection against melanophores, it is unlikely that five QTL, all with major
effects, would have cave alleles increasing the numbers of melanophores. If eye/lens reduction
were accomplished through genetic drift, it is unlikely that the pattern of effects would contrast
so radically with that for melanophores.

If eyes regressed through selection, was the selection directed against the eye itself or was it
indirect, through negative pleiotropy of alleles selected for affects on other traits? Hedgehog
signaling pathways direct the development of midline structures, including jaws, teeth and
tastebuds (reviewed in 5). Hedgehog activities also have important affects on eye development,
in part, because Hh expression is antagonistic to that of PAX6 and alters patterns of expression
of PAX2. Yamamoto et al. [5] have shown through experimental alteration of gene activity in
A. mexicanus embryos that hedgehog activity is a strong determinant of eye size. Increased
unilateral expression of sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh) in surface fish
suppresses the development of the treated eye. Thus, one hypothesis is that increased feeding
efficiency may be an important adaptation in cave fish, accomplished through up-regulation
of hedgehog signaling but at the expense of eye development [6].

The Hh hypothesis has two parts. The first is that up-regulation of hedgehog activity suppresses
development of the eyes; the second is that hedgehog activity was up-regulated during cave
fish evolution by selection to improve feeding efficiency and that this was the primary cause
of eye regression. The evidence linking hedgehog activity to eye development seems
compelling, but our data do not yet provide a definitive test of the second part of the hypothesis,
although they suggest it cannot be the sole explanation of eye regression. Six QTL for eye/lens
size co-map with QTL affecting feeding traits (jaw bone sizes, numbers of teeth and taste-
buds), but six others do not, and the QTL in the latter group control a much greater proportion
of explained additive variance than those in the former (not co-map vs. co-map groups: Eye:
0.233 vs. 0.087; LensE: 0.364 vs. 0.070; LensL: 0.014 vs 0.015). Furthermore, it is not just
feeding trait QTL and eye/lens QTL that co-map. Feeding trait QTL co-map with QTL for
melanophore numbers three times and QTL for eye/lens size and melanophore number co-map
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four times. We attribute this co-mapping to a general tendency towards pleiotropy with these
traits [7] rather than to any specific relationship between feeding efficiency and eye loss. In
addition, if the QTL affecting feeding traits were major contributors to eye regression, we might
expect to see strong negative phenotypic correlations between these traits and eye size in the
F2. Such correlations are weak or non-existent (Table 1). In sum, definitive tests of the
generality of the second part of the Hh hypothesis await the molecular identification of the
genes underlying eye loss and feeding morphology, and characterization of the fitness effects
of their alleles.

We also mapped candidate genes shh (LgP28), twhh (LgP15) and PAX6 (LgP10). No eye QTL
are located near these loci, making it unlikely that mutations in any of them are directly
responsible for eye regression. One eye QTL maps to a point near the gene for ocular and
cutaneous albinism (OCA2, LgP5).

Is it possible that Darwin’s premise was simply incorrect? Are eyes in a cave disadvantageous,
and if so, why? In essence, the argument against selection is that the cost of making an eye is
trivial compared to the cost of its replacement tissue in the socket [2,3], or that the
developmental cost is paid by cave fish anyway because the eyes start developing and only
degenerate after many cell cycles of tissue growth and replacement [4]. However, modern
physiology and molecular biology suggest these arguments might address the wrong costs. The
vertebrate retina is one of the most energetically expensive tissues, with a metabolism
surpassing even that of the brain [8]. Underscoring this high metabolic demand is the
observation that one manifestation of genetic defects decreasing the efficiency of mitochondria
is blindness (e.g., Leber's Hereditary Optical Neuropathy [9]). Thus, maintenance of eyes might
pose a significant burden in the cave environment. Increasing this burden, the vertebrate retina
uses more energy in the dark than in the light, because the membranes of the photoreceptor
disks must be maintained in the hyperpolarized state until depolarized in response to light
[10,11]. Oxygen consumption by the vertebrate retina is approximately 50% higher in the dark
than in the light [8]. Adding further to the retina’s cost is its structural maintenance. Ten percent
of the photoreceptor outer disks in vertebrates are shed and renewed each day, and the structure
may be completely replaced over 35 times yearly [12].

Thus, while the energetic cost of making an eye may be trivial, the expense of maintaining one
is much greater. In the dark, it may be costly enough to create effective selection for eye
regression. In contrast, the argument of metabolic cost cannot be made for regression of
pigmentation, and the QTL trait value data (Fig. 1) show that the two traits have regressed
through different mechanisms.

This study shows that regression may be effected by active selection as well as by the passive
accumulation and fixation of damaging mutations, and that the various possibilities can be
distinguished by the patterns of allelic substitutions involved. Thus, regression, an integral part
of the progress of evolutionary change, can be accomplished in a variety of ways.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Standardized trait values for surface homozygotes (SS), heterozygotes (SC) and cave
homozygotes (CC), for eye/lens and Melanophore QTL.
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