2018

Exploratory Application of a Sensory Activity Schedule in Head Start Preschool

Marian Perez
Dominican University of California

Elaine Wong
Dominican University of California

Michelle Perryman
Dominican University of California

Survey: Let us know how this paper benefits you.

Recommended Citation

https://scholar.dominican.edu/ug-student-posters/84

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Background

Low income children are at high risk to develop sensory integration dysfunction (SID) (Ben-Sasson, Carter & Briggs-Gowan, 2009). SID is a term used to describe an atypical response to sensory input that affects participation in occupation (Ayres, 2005). Sensory diets are prescribed sensory rich activities incorporated into daily routines in order to improve performance in people with SID (Wilbarger, 1995).

Sensory activity schedules (SAS) are based on the sensory diet concept adapted to fit in the classroom (Mills, Chapparo, & Hinitt, 2016). Mills, Chapparo and Hinitt (2016) report SAS to be effective in improving on-task behavior of children with ASD and ID.

The purpose of this study was to determine whether a SAS will increase the on-task behaviors of Head Start preschool students.

Hypothesis: SAS will increase on-task behavior of three Head Start preschool children.

Methods

Design: Exploratory quantitative multiple single subject design with a qualitative follow-up interview.

Teacher Training: Instructions on utilization of visual sensory activity board and demonstration of sensory activities.

Intervention: Research-led sensorimotor activities performed by the students prior to circle time.

Follow-up interview with Head Start Teacher: Identify themes related to success and barriers of the SAS implementation.

Results

Quantitative Results: Decrease of off-task behavior from pre-implementation to post-implementation phase indicates improvement in on-task behavior supporting the efficacy of SAS.

Off-task behavior decreased from the baseline to intervention phase for all 3 children. The SAS did appear to decrease off-task behavior. However, only one intervention point was observed.

Themes from Follow-Up Interview with Head Teacher

Program Timing
Scheduling conflicts between Head Start and researchers resulted in decreased training and implementation phase time.

Culture
Cultural disconnect and language barrier between teaching staff and research students weakened rapport.

Classroom Dynamics
Lack of positive classroom dynamics between the head teacher and teacher aides resulted in inconsistent implementation of SAS.

Off-Task Behavior Frequency Time Sampling Data

Data Collection: Frequency of off-task behaviors pre and post-implementation of SAS.
*Pre-day 1 data point was excluded due to high frequency of off-task behavior attributed to researchers’ novel presence.

Implications

SAS may be a useful tool for children at risk for SID for improving school participation.

More research is needed on effectiveness of SAS in a classroom including: a larger sample size, longer implementation period, and creation of an implementation training protocol.

Conducting a needs assessment before finalizing site selection is essential to understanding potential assets and barriers to successful SAS implementation in the classroom.

Acknowledgements

We would like to thank the Marin Head Start head teacher, teaching staff, and site director. We would like to thank Julia Wilbarger for her support and guidance.

References
