2017

Managing Fatigue with Technology for Individuals with Multiple Sclerosis

May Anne Gamueda
Dominican University of California

Janie Grant
Dominican University of California

America Ortega
Dominican University of California

Jordan Song
Dominican University of California

Survey: Let us know how this paper benefits you.

Recommended Citation
Gamueda, May Anne; Grant, Janie; Ortega, America; and Song, Jordan, "Managing Fatigue with Technology for Individuals with Multiple Sclerosis" (2017). *Student Research Posters*. 58.
https://scholar.dominican.edu/ug-student-posters/58

This Presentation is brought to you for free and open access by the Student Scholarship at Dominican Scholar. It has been accepted for inclusion in Student Research Posters by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.
Managing Fatigue with Technology for Individuals with MS

May Anne Gamueda, OTS; Janie Grant, OTS; America Ortega, OTS; Jordan Song, OTS

Capstone Advisor: Susan Morris, PhD, OTR/L
Dominican University of California Department of Occupational Therapy

Special thanks to the creator of Pace My Day app Michelle Ranae Wild and to our participants

INTRODUCTION

• Fatigue is a common and debilitating symptom that inhibits functional abilities for individuals with multiple sclerosis (MS) (Faguy, 2016).
• Energy conservation management (ECM) techniques result in lower levels of fatigue in these individuals (Tur, 2016).
• Mobile health applications (mHealth apps) support self-management strategies and user adherence rates using energy conservation techniques (Silva et al, 2015)

PURPOSE OF THE STUDY

To investigate whether the use of a mHealth app, Pace My Day (PMD), results in lower fatigue and improved adherence to energy conservation techniques for adults with MS.

PACE MY DAY APPLICATION

PMD is a mHealth app designed to help individuals monitor and plan their day and self-manage fatigue.

DESIGN AND METHODOLOGY

DESIGN
Quantitative, exploratory, pre-test and post-test design

INTERVENTION
To support use of ECM techniques, participants used PMD during one chosen task for 14 days.

PARTICIPANTS
Individuals with MS, ages 36-72

OUTCOMES
• Modified Fatigue Impact Scale (MFIS)
• Canadian Occupational Performance Measure (COPM)

RESULTS

Orientation to ECM and PMD training; Pre-test: MFIS and COPM
Participant two-week PMD and ECM techniques implementation
Post-test: MFIS and COPM

DISCUSSION

• Significant reduction in the average level of fatigue was achieved in two of the three categories of the MFIS (physical p=.02, cognitive p=.001).
• PMD was successful in improving satisfaction in the task, indicating an increase in participant’s self rated ability to complete their chosen task.

LIMITATIONS
• Small sample size (n=7)
• No control group

IMPLICATIONS FOR PRACTICE

• Interventions incorporating mHealth app can be used to improve occupational performance.
• Occupational therapists can collaborate with app developers to implement energy conservation techniques into self-management/time management applications.
• Apps can promote adherence to self-management and energy conservation strategies by providing reminders and tracking goals.

CONCLUSION

Results showed a significant decrease in levels of fatigue and an improvement in satisfaction with the chosen activity using PMD and ECM techniques.

REFERENCES