

Dominican Scholar

Occupational Therapy | Faculty Scholarship

Department of Occupational Therapy

9-26-2022

Systematic Review Brief: Virtual Interventions that Address Motor and Balance Impairments and Skills for Adults with Traumatic Brain Injury (TBI) (12-21)

Kitsum Li Dominican University of California, kitsum.li@dominican.edu

Beth Fields University of Wisconsin-Madison

Adam Kinney University of Colorado Anschutz School of Medicine

Olivia Condon University of Wisconsin - Madison

Emilio Villavicencio Dominican University of California, emilio.villavicencio@students.dominican.edu

https://doi.org/10.5014/ajot.2022/76S2020

Survey: Let us know how this paper benefits you.

Recommended Citation

Li, Kitsum; Fields, Beth; Kinney, Adam; Condon, Olivia; and Villavicencio, Emilio, "Systematic Review Brief: Virtual Interventions that Address Motor and Balance Impairments and Skills for Adults with Traumatic Brain Injury (TBI) (12-21)" (2022). *Occupational Therapy | Faculty Scholarship*. 22. https://doi.org/10.5014/ajot.2022/76S2020

This Article is brought to you for free and open access by the Department of Occupational Therapy at Dominican Scholar. It has been accepted for inclusion in Occupational Therapy | Faculty Scholarship by an authorized administrator of Dominican Scholar. For more information, please contact michael.pujals@dominican.edu.

Systematic Review Brief: Virtual Interventions that Address Motor and Balance Impairments and Skills for Adults with Traumatic Brain Injury (TBI) (12-21) Kitsum Li,¹ Beth Fields,² Adam Kinney,³ Olivia Condon,² Emilio Villavicencio¹

¹Department of Occupational Therapy, Dominican University of California ²Department of Kinesiology, University of Wisconsin-Madison ³Research Health Science Specialist, Rocky Mountain MIRECC for Suicide Prevention, Department of Veterans Affairs & Assistant Professor, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz School of Medicine

Abstract

Systematic Review Briefs provide a summary of the findings from systematic reviews

developed in conjunction with the American Occupational Therapy Association's (AOTA's)

Evidence-Based Practice Program. Each Systematic Review Brief summarizes the evidence on a

theme related to a systematic review topic. This Systematic Review Brief presents findings from

the theme of virtual interventions that address motor and balance impairments and skills for

adults with traumatic brain injury (TBI).

Virtual Interventions that Address Motor and Balance Impairments and Skills for Adults with Traumatic Brain Injury (TBI)

Full Systematic Review Question

What is the evidence for the effectiveness of interventions to address motor and balance impairments to improve occupational performance for adults with TBI?

Current Theme Reported

Virtual Interventions for Adults with TBI

Clinical Scenario

In the United States, an estimated 1.7 million adults sustain a TBI annually, which is equivalent to approximately one new incident of TBI every 21 seconds (Center for Disease Control and Prevention [CDC], 2019; Georges & Das, 2021). In turn, over 5.3 million adults with TBI, about 2% of the population, are living with chronic disabilities (CDC, 2015). Rehabilitation for adults with TBI often focuses on improving their independence in activities of daily living, social functioning and participation, and community integration (CDC, 2015). Occupational therapy practitioners address a myriad of barriers to occupational performance, including range of motion, muscle tone, motor control, endurance, vestibular function and balance. One of the popular activities to target motor and balance impairments is virtual-reality based interventions (CDC, 2015). According to the Occupational Therapy Practice Framework: Domain and Process 4th Edition (OTPF-4), virtual intervention is defined as "*the use of simulated, real-time, and near-time technologies for service delivery absent of physical contact*" (American Occupational Therapy Association [AOTA], 2020, p.62). Hence, interventions using a virtual reality context are a form of virtual intervention within the domain of occupational therapy.

This systematic review brief was guided by the OTPF-4 to determine the types of virtual interventions which address motor and balance impairment to improve occupational performance for adults with TBI.

Summary of Key Findings

Five articles were included in the review that addressed motor and balance impairments using virtual-reality based interventions with adults with TBI (Table 1).

Bottom Line for Occupational Therapy Practice

With the continuous advancement in technology and the popularity of virtual reality systems as a source of enjoyment, occupational therapy practitioners can utilize virtual interventions (e.g., virtual reality) as a relatively affordable and easily accessible rehabilitation activity, such as the Xbox Kinect system, to address motor and balance impairments in adults with TBI (Ravenek et al., 2016). The benefits of virtual interventions are many, one of which is leveraging the enjoyment elicited through gaming and virtual reality systems to improve motivation to adhere to a high number of repeated exercises and movements (Glegg & Levac, 2018). Through neuroplasticity, a high number of repetitions is needed to produce improvement in motor skills, both in quality and timely execution of movements for functional activities and mobility (Dayan & Cohen, 2011). Thus, virtual interventions can provide the means for the high repetition and intensity essential to improvements in motor control, mobility, and balance in adults with TBI. The reviewed studies show that the most common virtual intervention dose ranges from 12-18 sessions within 4-6 weeks, and the gaming and virtual reality-based interventions can be successfully provided in clinics and at home. However, for the virtual interventions to be effective, the gaming and virtual-reality programs should be specifically chosen and graded according to an individualized treatment plan. Occupational therapy practitioners should identify

specific motor and balance impairments in adults with TBI, coupled with activity analyses and systematic grading of the gaming and virtual-reality programs to facilitate improvement in motor and balance outcomes and achievement of client-centered goals. It is important to note that the reviewed studies of virtual interventions in adults with TBI did not include measurements in occupational performance, nor did it include method of delivery through telehealth. Without measurement of occupational performance outcomes, the extent to which improvements in motor and balance skills lead to improvement in daily life activities remains unknown. Future research should expand conception of virtual interventions to be inclusive of telehealth and include occupational performance as one of the outcomes.

Note: Levels of evidence used in this review: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

References (*review articles)

American Occupational Therapy Association (2020). Occupational therapy practice framework:
 Domain and process fourth edition. *The American Journal of Occupational Therapy*,
 74(Supplement 2), 7412410010p1-7412410010p87.

https://doi.org/10.5014/ajot.2020.74S2001

Centers for Disease Control and Prevention (2019). *Surveillance report of traumatic brain injury-related emergency department visits, hospitalizations, and death – United States, 2014.* Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. . <u>https://www.cdc.gov/traumaticbraininjury/pdf/TBI-surveillance-</u> <u>report-FINAL 508.pdf</u>

Centers for Disease Control and Prevention. (2015). *Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation*. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. <u>https://www.cdc.gov/traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab</u>

<u>-a.pdf</u>

*Cuthbert, J.P., Staniszewski, K., Hays, K., Gerber, D., Natalie, A., & O'Dell. D. (2014). Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury. *Brain Injury*, *28*(2). 181-188.

https://doi.org/10.3109/02699052.2013.860475

Dayan, R., & Cohen, L.G. (2011). Neuroplasticity subserving motor skill learning. *Neuron*, 72(3), 443-454. <u>https://doi.org/10.1016/j.neuron.2011.10.008</u>

Georges, A.M., Das, J. (2021) *Traumatic Brain Injury*. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459300/ Glegg, S.M.N., & Levac, D.E. (2018). Barriers, facilitators, and interventions to support virtual reality implementation in rehabilitation: A scoping review. *The American Academy of Physical Medicine and Rehabilitation*, 10(11), 1237-1251.

https://doi.org/10.1016/j.pmrj.2018.07.004

- Ravenek, K.E., Wolfe, D.L., & Hitzig, L. (2016). A scoping review of gaming in rehabilitation.
 Disability and Rehabilitation: Assistive Technology, 11(6), 445-453.
 https://doi.org/10.3109/17483107.2015.1029538
- *Sessoms, P.H., Gottshall, K.R., Collins, J-D., Markham, A.E., Service, K.A., & Seth A. LT. (2015) Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. *Military Medicine*, 180(3), 143-149. <u>https://doi.org/10.7205/MILMED-D-14-00385</u>
- *Straudi, S., Severini, G., Charabati, A.S., Pavarelli, C., Gamberini, G., Scotti, A., & Basaglia, N. (2017). The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurology, 17(86), 1-7. https://doi.10.1186/s12883-017-0871-9
- *Tefertiller, C., Hays, K., Natale, A., O'Dell, D., Ketchum, J., Sevigny, M., Eagye, C.B., Philippus, A., & Hasrrison-Felix, C. (2019). Results from a randomized controlled trial to address balance deficits after traumatic brain injury. *Archives of Physical Medicine and Rehabilitation, 100,* 1409-1416. <u>https://doi.org/10.1016/j.apmr.2019.03.015</u>
- *Ustinova, K.J., Perkins, J., Leonard, W.A., & Hausbeck, C.J. (2014). Virtual reality game-based therapy for treatment of postural and coordination abnormalities secondary to TBI: A pilot study. *Brain Injury*, 28(4), 486-495. <u>https://doi.org/10.3109/02699052.2014.888593</u>

Table 1.

Virtual Interventions to Improve Motor Outcomes for Adults with TBI

Author/ Level Evidence	Intervention	Statistically Significant Improvement from Intervention		
Five articles were included in the review that addressed motor and balance impairments using				
virtual-reality based interventions with adults with TBI. Two of the studies (one level IB and one				
level 2B) did not yield statistically significant improvement in motor control and/or balance				
outcomes. One level 1B randomized controlled trial (RCT), one level 2B pilot RCT and one				
level 3B pre-post pilot study provided moderate strength of evidence that practitioners can use				
gaming and virtual reality-based interventions to enhance balance, improve functional				
movement and mobility, decrease vestibular symptom severity and fall risks in adults with TBI				
Sessoms	Population: 20-42 years old with a vestibular disorder	Gait speed and		
et.al.	related to mild TBI within the prior year	vestibular symptoms		
(2015)	Intervention: A virtual-reality system (Computer-Assisted			
	Rehabilitation Environment- CAREN) that is physically			
1B - RCT	and cognitively challenging in a realistic but controlled			
	environment			
	Delivery Method: Individual at a Vestibular Therapy			
	Clinic			
	Dose: 2x/week X 6 weeks of CAREN			
Tefertiller	Population: Adults with chronic moderate or severe TBI,	None		
et. al.	self-report of balance deficits			
(2019)				

Author/ Level Evidence	Intervention	Statistically Significant Improvement from Intervention
	Intervention: Graded virtual reality exercises using Xbox	
1B –	Kinect system	
RCT,	Delivery Method: Individual at home	
blinded	Dose: 30-minute sessions for 3-4 x/week X 12 weeks	
Cuthbert	Population: Adults with newly-diagnosed TBI in acute	None
et.al.	inpatient rehabilitation	
(2014)	Intervention: Traditional PT with additional 8 minutes of	
	Wii Fit balance board games and 7 minutes of Wii Sport	
2B –	games.	
Pilot	Delivery Method: Individual at inpatient rehabilitation	
RCT	Dose: 4x/week X 4 weeks	
Straudi	Population: Adult with chronic TBI with balance deficit	Static balance while
et. al.	Intervention: Video Game Therapy that encompasses a	performing functional
(2017).	wide range of motor activities in standing	movements and
	Delivery Method: Individual at community setting	mobility
2B –	Dose: 3x/week X 6 weeks	
Pilot		
RCT		
Ustinova	Population: Adults with TBI	Fall risk, static and
et.al.		dynamic balance, and
(2014)		

Author/ Level Evidence	Intervention	Statistically Significant Improvement from Intervention
	Intervention: Virtual reality with Xbox Kinect Motion	arm precision
3B – Pre-	Sensor, graded games which progress from simple single-	movement
posttest	limb guided movements to complex whole-body tasks	
pilot	Delivery Method: Individual in a supervised clinic	
study	Dose: 50-55-minute sessions for 2-3x/week X 5-6	
	consecutive weeks for a total of 15 sessions	