Graduation Year


Document Type

Master's Thesis


Master of Science


Biological Science

Program Director

Meredith Protas, PhD

First Reader

Bridget Yates

Second Reader

Meredith Protas, PhD


Pulmonary arterial hypertension (PAH) is a rare multifactorial disease characterized by abnormal high blood pressure in the pulmonary artery, or increased pulmonary vascular resistance (PVR), caused by obstruction in the small arteries of the lung. Increased PVR is also thought to be caused by abnormal vascular remodeling, due to thickening of the pulmonary vascular wall resulting from significant hypertrophy of pulmonary arterial smooth-muscle cells (PASMCs) and increased proliferation/impaired apoptosis of pulmonary arterial endothelial cells (PAECs). Herein, we investigated the mechanisms and explored molecular pathways mediating the lung pathogenesis in two PAH rat models: Monocrotaline (MCT) and Sugen5416/Hypoxia (SuHx). We analyzed these disease models to determine where the vasculature shows the most severe PAH pathology and which model best recapitulates the human disease. We investigated the role vascular remodeling, hypoxia, cell proliferation, apoptosis, DNA damage and inflammation play in the pathogenesis of PAH. Neither model recapitulated all features of the human disease, however each model presented with some of the pathology seen in PAH patients.

Available for download on Friday, May 30, 2025