Document Type



Marine Ecology Progress Series





First Page


Last Page


Publication Date



Natural Sciences and Mathematics


The burrow morphology, burrowing behavior and feeding mechanisms of the thalassinidean shrimp Upogebia omissa were studied. Twenty burrow casts were made in situ with epoxy resin, and an overall 'Y' shape was most frequently observed. Several burrows consisted of a single, oblique tunnel; burrow diameter was positively correlated with burrow length, maximum depth and distance between openings. Additionally, burrow length was positively associated with maximum depth, indicating that as burrow length increased burrow depth increased; i.e. burrows spread vertically rather than horizontally. Total sediment displacement by the burrows accounted for 2.6 % of sediment to a depth of 30 cm. The sediment-water interface increased by 290 % in areas containing burrows compared to areas without burrows. Solitary adults were trapped in 15 casts. Three casts were interconnected, but each burrow contained only 1 shrimp. Regression analysis revealed shrimp length to be positively correlated with burrow diameter and area. In aquaria, U. omissa displayed a dual feeding behavior: the shrimp filtered suspended particles, and also fed &redly on the sediment. Filter-feeding occurred mainly within U-shaped tunnels, while deposit-feeding was observed in association with the oblique tunnels of the burrow. Although filter-feeding has been considered as the main trophic mode in upogebiids, we present evidence that U. omissa may have a more pronounced deposit-feeding behavior than described for other species of this group. Based on our findings, we suggest that current models on the functional morphology of burrows in relation to feeding should be used cautiously in inferring the trophic behavior of these shrimp.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.