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ABSTRACT: Additional experimental evidence is presented for in vitro generation of hydroxyl
radicals because of redox cycling of environmentally persistent free radicals (EPFRs) produced
after adsorption of 2-monochlorophenol at 230 °C (2-MCP-230) on copper oxide supported by
silica, 5% Cu(II)O/silica (3.9% Cu). A chemical spin trapping agent, 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was
employed. Experiments in spiked O17 water have shown that ∼15% of hydroxyl radicals formed
as a result of redox cycling. This amount of hydroxyl radicals arises from an exogenous Fenton
reaction and may stay either partially trapped on the surface of particulate matter (physisorbed or
chemisorbed) or transferred into solution as free OH. Computational work confirms the highly
stable nature of the DMPO−OH adduct, as an intermediate produced by interaction of DMPO
with physisorbed/chemisorbed OH (at the interface of solid catalyst/solution). All reaction
pathways have been supported by ab initio calculations.

■ INTRODUCTION
Resonance-stabilized, environmentally persistent free radicals
(EPFRs) (semiquinone, phenoxyl, cyclopentadienyl, etc.) can
form on the surfaces of fine particles and persist almost
indefinitely in the environment.1−3 Redox cycling of adsorbed
EPFRs may be a source of reactive oxygen species (ROS), such
as hydroxyl radicals (•OH), superoxide anion radicals (O2

• −),
hydrogen peroxide (H2O2), etc.

1 These results were partially
supported by later works.2,4 Recently, a chemical spin trapping
agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) in conjunc-
tion with electron paramagnetic resonance (EPR) spectroscopy
was employed to measure the production of ROS in an aqueous
suspension of particle-associated EPFRs derived from adsorp-
tion of 2-monochlorophenol (2-MCP) on 5% Cu(II)O/silica
(3.9% Cu) particles.5,6 It was established that hydroxyl radicals
are generated by a surface-mediated redox cycle, with the
resulting hydroxyl radicals remaining completely or largely on
the surface such that they cannot be readily scavenged to form
secondary organic radicals in quantities detectable using
currently available methods.6 The surface-bound hydroxyl
radical as well the reduced metal in the immediate vicinity
are responsible for the enhanced activity of the particles. The
concentration of hydroxyl radicals was measured at ∼1 μM for
a 140 min incubation of EPFR-containing solution.5

Failure to form secondary radicals using standard scavengers,
such as ethanol, dimethyl sulfoxide, sodium formate, and
sodium azide, suggests that caution must be used to interpret
free hydroxyl radical generation in solution. There is the
dilemma: first, hydroxyl radicals may form on the surface via a
non-homogeneous reaction of H2O2 because of “site-specific
OH production” known as “site-specific Fenton reaction”.7 A
fraction may react with the target (in our case, with DMPO),

and the remainder may be released into solution as free OH
without any significant effect on the scavengers (because of the
low concentration of hydroxyl radicals). On the other hand, the
significance of the concerted reaction between a metal site,
H2O2, and a target (here DMPO) without participation of OH
in the general process7,8 cannot be excluded.
In other words, it is always challenging and in most cases

unclear to ascertain the origin of OH radicals.7,9 The large
problem is that the DMPO−OH adduct (as an indicator for
free OH) may also be formed by nucleophilic addition of water
to DMPO catalyzed by a transition-metal impurity10−12 (or
through intermediate DMPO radical cation13). The non-radical
nucleophilic reaction of water has been proposed to be a
significant pathway for the formation of DMPO−OH radical
adducts, even during a Fenton reaction;14,15 i.e., 80−90% of the
total DMPO−OH in 17O-enriched water was due to iron-
dependent nucleophilic addition of water.15 However, the same
authors also discuss a water-independent mechanism of
DMPO−OH formation15 and how an Fe or Cu ion-induced
nucleophilic addition of water to DMPO may be significantly
suppressed in experiments performed in most common
buffers.14

These arguments are the main reasons for performing the
spin-trapping experiments using 17O-labeled water in the
presence of EPFRs associated with CuO/SiO2 nanoparticles.
We provide here additional evidence of in vitro generation of
hydroxyl radicals by EPFRs produced from the adsorption of 2-
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monochlorophenol at 230 °C (2-MCP-230) on a copper oxide
catalyst supported by silica nanoparticles, 5% Cu(II)O/silica
(3.9% Cu).16,17

We use ab initio calculations to determine the thermody-
namically favored physisorbtion/chemisorption of hydroxyl
radicals on a particulate matter (PM) surface as well as illustrate
the highly stable nature of the DMPO−OH adduct adsorbed at
the interface of a solid catalyst in solution.

■ EXPERIMENTAL SECTION
Materials. High-purity DMPO (99%+, GLC) was obtained

from ENZO Life Sciences International and used without
further purification. 2-MCP (99+%), copper nitrate hemi-
pentahydrate (99.9+%), and 0.01 M phosphate-buffered saline
(PBS, 0.138 M NaCl/0.0027 M KCl) was all obtained from
Sigma-Aldrich. Cab-O-Sil were obtained from Cabot (EH-5,
99+%). 17O-Labeled water (40.7% 17O, 1.6% 18O, and 57.7%
16O) was obtained from ICON Isotope (Summit, NJ).
EPFR Surrogate Synthesis. The 5% CuO/silica (3.9% Cu)

particles were prepared by impregnation of silica powder (Cab-
O-Sil) with 0.1 M solution of copper nitrate hemipentahydrate
and calcinated at 450 °C for 12 h.18 The sample was then
ground and sieved (mesh size of 230, 63 μm). Prior to
exposure, the particles were heated in situ in air to 450 °C for 1
h to pretreat the surface. They were then exposed to saturated
vapors of 2-MCP at 230 °C using a custom-made vacuum
exposure chamber for 5 min. Once exposure was complete, the
temperature of the system was cooled to 150 °C for 1 h at 10−2

Torr. EPR spectra were then acquired at ambient conditions to
confirm the existence of EPFRs.
In Vitro Studies. Both control and sample solution

suspensions, containing particles without and with EPFRs,
respectively, were prepared in a similar manner.6,5 The final
composition of the suspension in most experiments was
particles (50 μg/mL) + DMPO (150 mM) + reagent (200 μL).
For experiments with (17O) H2O, all reagents were dissolved

in (17O) H2O at the same concentration mentioned above
[only half of the amounts of components were used to save the
(17O)-labeled water, i.e., balanced at 100 μL].
The solutions prepared in either 100% (16O) H2O or 40.7%

(17O) H2O + 57.7% (16O) H2O were kept in the dark and
shaken for 30 s using a Vortex Genie 2 (Scientific Industries) in
touch mode. A total of 20 μL (10 μL in the case of 17O-labeled
water) of the solution was transferred to an EPR capillary tube
(inner diameter of ∼1 mm and outer diameter of 1.55 mm) and
sealed at one end with a sealant (Fisherbrand). The capillary
was next inserted in a 4 mm EPR tube and placed into the EPR
resonator.19 The intensities of the EPR spectra of DMPO−OH
adducts were reported in arbitrary units, DI/N [double
integrated (DI) intensity of the EPR spectrum normalized
(N) to account for the conversion time, receiver gain, number
of data points, and sweep width].20 Each experiment was
performed at least twice, and the final intensity of the EPR
spectrum of DMPO−OH represents an average of all spectra
obtained for each experiment.
Because the chemistry of interaction of chelators with the

surface of the model particles is unclear,21−24 we abstained from
the use of chelators, such as desferrioxamine (DFO) and
diethylenetriaminepentaacetic acid (DETAPAC), which mini-
mize the iron content in solution. The comparative method
(this work), a comparison of sample and control solutions
exactly at the same conditions, is preferable.5,6 All secondary
processes (DMPO decay, oxidation by dissolved oxygen,

reduction, dimerization, nucleophilic addition of water, etc.),
if they occur, we believe have the same contribution for both
the control and sample solutions.

EPR Measurements. EPR spectra were recorded using a
Bruker EMX-20/2.7 EPR spectrometer (X-band) with dual
cavities and modulation and microwave frequencies of 100 kHz
and 9.516 GHz, respectively. Typical parameters were sweep
width of 100 G, EPR microwave power of 10 mW, modulation
amplitude of 0.8 G, time constant of 40.96 ms, and sweep time
of 167.77 s.

Simulation Procedure. Bruker Win-EPR SimFonia
spectral simulation program was used that runs on a personal
computer (PC) under Microsoft Windows.
The simulation of DMPO−16OH gives EPR spectrum with

1:2:2:1 intensity distribution, while incorporation of 17O atom
in DMPO−OH (DMPO−17OH adduct) increases the number
of EPR lines from 4 (for DMPO−16OH) to 15 (for
DMPO−17OH) because of the 17O coupling (17O has a
nuclear spin of 5/2),

25,26 vide inf ra. In the case of simulation for
the mixture with different contents of DMPO−17OH/
DMPO−16OH, the total number of lines will reach 19 (cf.
panels a and b of Figure 2), with the relative intensity of each
spin adduct spectra directly proportional to their percentage
content.

Computational Details. Ab initio calculations were
performed with the Gaussian 09 suite of programs.27 The
B3LYP hybrid functional was chosen because it has recently
been shown consistent with experimental spin-trapping results
involving DMPO28 and provides reliable ground-state structural
parameters for copper-containing structures.29 Homolytic bond
dissociation energies (BDEs) studied with a variety of density
functional theory (DFT) methods also indicate B3LYP usage
with a correlation-consistent basis set minimizing the deviation
from benchmark calculations.30 As a result, we used the
correlation-consistent, double-ζ polarized cc-pVDZ basis set in
our calculations. Each stationary-point structure (B3LYP/cc-
pVDZ) yielded only real frequencies. Scaling factors for the
frequencies were not applied.

■ RESULTS AND DISCUSSION
The hypothesized Scheme 1 may be a source of ROS
generation.5,6 It involves (1) electron transfer from the EPFR

to molecular oxygen, forming superoxide radical ion, and (2)
hydrogen peroxide and a hydroxyl radical are produced via
dismutation and Fenton reactions, respectively. The spin-
trapping experiments in 17O-spiked water may spread a light on
the problem of whether DMPO−OH adducts are generated by
nucleophilic addition of water to DMPO or via Scheme 1.

Spin Trapping by DMPO in 17O-Enriched Water. The
results of spin-trapping experiments performed in 16O water
and 17O-enriched water are represented in Figure 1. The
intensity of DMPO−16OH adducts is consistently higher in
sample solutions: curve 1 in comparison to the control in
regular H2

16O water (not shown).5,6 The same trend is
observed for DMPO−16OH adducts in 17O-enriched water:
curve 2 represents the sample, and curve 2′ represents the
control solutions. On the other hand, the isotopic effect on the

Scheme 1
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accumulation of spin adducts is clearly seen; i.e., the
DMPO−16OH spectra intensity in water with composition of
40.7% (17O) H2O + 57.7% (16O) H2O is less than in 100% 16O
water (lines 2 and 1 in Figure 1, respectively). The difference
between sample, curve 2, and control solutions, curve 2′
(currently ∼15−20% at high incubation time), can be markedly
increased after centrifuging the sample by removing large
clusters in the particle solution. The smaller the size of the
nanocluster, the higher the activity to generate ROS.31 As a
result, a 40−50% difference can be seen between sample and
control solutions, unambiguously showing the fact of
generation of hydroxyl radicals during redox cycling.
Finally, while the characteristic four lines of the DMPO−OH

spectrum were typical for the EPFR solution prepared in 100%
16O water,6 a modified EPR spectrum was detected in EPFR
solution prepared in water with composition of 40.7% (17O)

H2O + 57.7% (16O) H2O (black and red lines in Figure 2a).
The extra nuclear hyperfine splitting observed in Figure 2a is
due to the DMPO−17OH adduct14 [15 lines with hyperfine
splitting constant (hsc) = 4.66 G for 17O, which has a nuclear
spin, I = 5/2] along with DMPO−16OH (4 lines with hsc = 15.0
G for H and N, where 16O has no nuclear spin, I = 0). The
appearance of DMPO−17OH splitting is only indicative for
nucleophilic addition of water on the DMPO.15,32 These extra
lines are clearly seen in simulated spectra in Figure 2b at
composition of 80% (17O) H2O + 20% (16O) H2O mixture
with superposition of DMPO−16OH (assigned by asterisks)
and DMPO−17OH (rest of the 15 lines) adducts.
When simulated spectrum C (in Figure 2a) at composition

of 40.7% (17O) H2O + 57.7% (16O) H2O is subtracted from the
experimental spectrum B, a residue spectrum B−C is shown,
which is typical for the DMPO−16OH adduct EPR spectrum.
The residue B−C spectrum shows that there is an additional
source of formation of DMPO−16OH, which is not due to the
nucleophilic addition of water to DMPO and may be likely due
to Scheme 1. A simple examination for the amount of residue
spectrum in overall spectral intensity of experimental spectrum
B (Figure 2a) demonstrated that ∼85% of the oxygen atoms
present in the DMPO−OH adduct originated through
nucleophilic addition of H2O to DMPO, while ∼15%
DMPO−16OH adduct was due to the trapping of the hydroxyl
radical formed from the superoxide (16O2

• −) dismutation
reaction (Scheme 1).
The idea that most contribution in spin-trapping experiments

is produced by the addition of water to DMPO, as mentioned
above, is not without literature precedence.25,33 Ultimately, the
pathway of the water-independent mechanism for DMPO−OH
adduct formation must always be checked.15

The next question of interest is whether hydroxyl radicals
produced from the exogenous Fenton reaction (site-specific
Fenton reaction7) stay on the surface or leave it? This problem
(free versus bound OH radical) was partly addressed in our
previous publication.6 It is also a dispute theme in the
literature.7,34−41

Figure 1. Difference in the DMPO−OH adduct spectral intensity for
the samples containing EPFRs in 16O water (line 1) and 17O-enriched
water (line 2). Line 2′ stands for control solution in 17O-enriched
water.

Figure 2. (a) EPR spectra of DMPO−17OH/DMPO−16OH adducts at an incubation time of 300 min for a solution of EPFRs (50 μg/mL) +
DMPO (150 mM) + PBS (total 100 μL) with content of 17.3% (17O) H2O (black line A) and ∼41% (17O) H2O (red line B). Line C is a computer
simulation of DMPO−17OH/DMPO−16OH adducts at a concentration of 41% 17O and 59% 16O based on the parameters from panel b. B−C is the
residue spectrum where the 3 lines assigned by squares represent the EPR spectrum for 15N (∼0.37% isotopic abundance in nature). (b) Computer
simulation of the DMPO−17OH/DMPO−16OH adduct EPR spectrum at a concentration of 80% 17O and 20% 16O in water (the spectrum assigned
by an asterisk corresponds to DMPO−16OH). The hsc values for N and H are ∼15.01 and 4.66 G for 17O. g, 2.0061; ΔHp−p, 1.15 G; and the EPR
line shape, Gaussian.
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One of the plausible experimental facts of surface site bound
OH is deduced from the high stability of the DMPO−OH
adduct (days) at the interface of solid catalyst/solution.6 This

experimental fact is surprising. For comparison note, the half-
life time of DMPO−OH in homogeneous media depends upon
the environment and may be changed from 2 to 20 min

Figure 3. Illustration of the (a) chained-shaped cluster with trigonal planar form of Cu, (b) adsorption (trapping) of OH because of hydrogen
bonding shown by the arrow on the CuO/SiO2 surface, and (c and d) further interaction of the cluster with DMPO (C, brown; N, blue; O, red; and
H, white). Dark gray, Cu; light gray, Si; red, O; white, H.

Figure 4. (a) Adsorption of OH on cluster (tetrahedral Cu) and (b) interaction of DMPO (black, C; blue, N; red, O; white, H) with adsorbed OH
by (c) formation of stabilized DMPO−OH on cluster surfaces. The hydrogen bonding is shown by dashed lines. Dark gray, Cu; light gray, Si; red, O;
white, H.
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(aqueous solution)12,42 or 55 min in phosphate buffer.43 A long
lifetime is only reported in ref 44: the DMPO−OH spin
adducts in water solution last for hours depending upon the
temperature.
In fact, it may be emphasized that the portion of DMPO−

OH-formed in an independent way (from the addition of OH
to DMPO) is stable likely on the silica surfaces or the catalyst
site. There is literature experimental data about stabilization of
DMPO adducts on secondary organic aerosol particles such as
DMPO−HO2, DMPO−RO, DMPO−RO2, and DMPO−OH
detected by electrospray ionization−tandem mass spectrometry
(ESI−MS/MS)45 and DMPO−glutathionyl in an intracellular
environment using high-performance liquid chromatography
(HPLC).46

To address the existence of surface site bound OH as well as
high stability of DMPO−OH in an environment of CuO/SiO2,
ab initio calculations were initiated. The calculations were used
to assess the thermodynamic basis for the current interpretation
of experimental results by hypothesizing the following: (1)
Because of EPFRs cycling mechanism the H2O2 is formed at
the interface of nanoparticle/water solution.5,6 The hydroxyl
radicals may be generated by either an exogenous Fenton
reaction5,6,47 or by direct decomposition of H2O2 on the surface
sites, defects (see the Supporting Information). (2) The
hydroxyl radicals are stabilized by surface-active centers. (3)
DMPO attacks stabilized (physisorbed/chemisorbed) OH
radicals, forming a DMPO−OH adduct, which stays on the
surface for a long time because of energetic stabilization.
CuO/SiO2 Model Systems with Both Trigonal- and

Tetrahedral-Coordinated Cu Sites. We have performed ab
initio calculations to investigate the stabilization (physisorption
and chemisorption) of OH radicals on model CuO/SiO2
surfaces, followed by further interaction of the adsorbed OH
with DMPO. Note that physisorption of the OH radical is
primarily characterized by the hydrogen bonding taking place
(the bonding distance of ≤2 Å), whereas chemisorption is
characterized by the absence of hydrogen bonding (the
bonding distance close to the covalent bond value of, for
instance, in HO−OH, ∼1.45−1.47 Å).
Experimental synthesis of copper-containing silicates reveals

a mixture of copper in each of its valence states.48,48,49 X-ray
photoelectron spectroscopy (XPS) reveals the presence of
copper hydroxide, copper oxide, and Si−O−Cu bonds in these
clusters. While Chang et al. argue that the stable Si−O−Cu
bonds are primarily electrostatic,48 Parameswaran et al. suggest
that their stable nature is covalent.49

Our model reactant surface is a copper-containing silica-like
structure derived from the addition of a −O−Cu−(OH)2
moiety to the previously optimized tetrahedrally-coordinated,
radical hydroxide cluster found by Kubicki et al.41 [Figures 3a
(3-coordinate Cu) and 4a (vide inf ra tetrahedral Cu cluster)].
Radical-ended, as opposed to ionic, silica-like structures have

been computationally shown to add water favorably via a radical
silicate−water mechanism, as opposed to a cationic or anionic
silicate mechanism, with both radical pathways (H2O + •SiO or
SiO•) resulting in a hydroxylated silica surface site.41 We have
considered a limited number of atoms around an active site to
make the calculations tractable, as small models have been used
successfully by other researchers.50,51,41

The optimized Cu atoms in structures a and b of Figure 3 are
both incorporated into a trigonal planar geometry, with Cu−
OH and Cu−O bond distances similar to experimental
values.52,53 Small inorganic Cu(I) and Cu(II) complexes have

been experimentally found to exhibit both trigonal and
tetragonal coordination around the Cu atom.54−58 As a result,
we also added a hydroxyl moiety to the 3-coordinate Cu cluster
(directly to Cu atom) shown in Figure 3a to produce a 4-
coordinate Cu cluster (in Figure 4a). The addition of OH to
the 3-coordinate Cu clusters yields reaction energy of −33.2
kcal/mol.
The hydrogen bonds arranged in both head-to-tail and

intramolecular fashion shown in both Figures 3b and 4b allow
for the physisorption of OH (Figure 3b; bond distance of 1.62
Å) with an exoergic reaction energy of ΔE = −21.95 kcal/mol
or chemisorption of reactive hydroxyl groups (Figure 4b; bond
distance of 1.49 Å) with an exoergic reaction energy of −29.5
kcal/mol.
Further addition of DMPO to the physisorbed/chemisorbed

hydroxyl radicals in Figures 3b and 4b is also exoergic, leading
to the stabilization and formation of the DMPO−OH adduct,
for instance in Figure 3d, with an exoergic reaction energy of
−86.7 kcal/mol. The addition of DMPO to the chemisorbed
OH in Figure 4b also yields an exoergic reaction energy of
−73.2 kcal/mol. Stabilization of DMPO−OH because of
hydrogen bonding on the cluster surface is shown in Figures
3d and 4c. It has been shown recently that DMPO and
inorganic radicals favor radical addition over nucleophilic
addition in the presence of hydrogen bonding, both
experimentally and computationally.28

These theoretical calculations complement experimental
evidence for the highly stable nature of DMPO−OH adducts
in CuO/SiO2 aqueous solutions.
Therefore, the integrated intensity of DMPO−OH adducts

may be considered a sum of DMPO−OH formed from the
addition of free OH (because of the exogenous Fenton reaction
generated by the cycle) to DMPO and a portion of DMPO−
OH stabilized on a particle surface (as a result of the attack of
DMPO to OH trapped on the surface). Currently, the
DMPO−OH adducts formed in a solution or on the surfaces
of particles are not distinguishable. We may hypothesize that
the rate of accumulation of DMPO−OH adducts on particle
surfaces decreases during incubation because of sluggish
generation of OH; i.e., the initial EPFRs as well as reductants
are consumed in secondary reactions not generating additional
amounts of OH in the cycle. Because DMPO−OH decays
faster in solution, we conclude that the surface-stabilized
DMPO−OH adducts are responsible for the longer incubation
times. In addition, the surface-stabilized DMPO−OH adducts
are not expected to return to solution because the exoergicity of
the reactions for both a trigonal planar Cu (Figure 3) and a
tetrahedral Cu (Figure 4) are sufficiently high at −86.7 and
−73.2 kcal/mol, respectively.
Our calculations also show that DMPO may interact with

physisorbed or chemisorbed hydroxyl groups on the CuO/SiO2
cyclic cluster surfaces with the release of DMPO−OH into
solution (see the Supporting Information). As a consequence,
there may be multiple hydroxyl-radical-generating pathways: (i)
The mayor channel of OH generation is the cycling scheme of
EPFR proposed earlier.5,47 OH forms through the exogenous
Fenton reaction as follows:

+

→ + +− •

H O Cu(I) (organic ligand)

Cu(II) (organic ligand) OH OH
2 2

(1)

Hydroxyl radicals formed in reaction 1 are either partially
transferred into solution and form homogeneously DMPO−
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OH adducts or partially stabilized on the particle surfaces,
forming DMPO−OH stable adducts (Figures 3 and 4). (ii) Ab
initio calculations show that a partial decomposition of H2O2 on
the silica surface active sites is also possible. For instance,
because of homolytic cleavage of H2O2 on the silica active sites
(defects, dangling bonds, etc.), one hydroxyl group hydrox-
ylates the surface site (chemisorption) and the second hydroxyl
radical is trapped between neighboring Si−OH groups on the
surface (by hydrogen bonds) (see Figure S1B of the Supporting
Information). Further experimental addition of DMPO leads to
stabilization and formation of DMPO−OH on the surfaces
(Figure S2 of the Supporting Information).
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