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Abstract 

 Dietary Restriction (DR) is a robust intervention that is known to extend lifespan and 

increase spontaneous activity in multiple species.  Whether activity increase plays a causal role 

in mediating the health protective benefits of DR remains unknown.  To investigate this 

relationship, nutritional manipulations and laboratory selection for lifespan were simultaneously 

applied.   Three physiological outputs were used for the screening and characterization of genes 

that may mediate the effects of DR: starvation resistance, spontaneous activity levels, and 

lifespan. The physiologic changes that occur are partially mediated by the nutrient sensing TOR 

pathway and its downstream signaling components, specifically the translational repressor, 

eukaryotic initiation factor eIF4E binding protein (4E-BP).  Overexpression of constitutively 

active d4E-BP in the muscle tissue of Drosophila melanogaster led to starvation resistance and 

increased activity in flies fed a nutrient rich diet.  However, the associated lifespan extension 

effect observed in previous studies was not reproduced.  This may be due to the use of a different 

laboratory strain of d4E-BP, of which there are several.  Three downstream targets of 4E-BP 

were identified from screening: Fumble, Nemo, and Nedd2-like Caspase.  Both Fumble and 

Nemo extend lifespan upon DR when inhibited in the muscle tissue.  While these candidate 

genes hold promise for future studies in healthy aging, sources of variation in results must be 

controlled.  In order to truly understand the influence that a specific mutant gene has on lifespan, 

results need to be clearly interpretable, robust and repeatable.  Only then will it be possible to 

start making conjectures about their relevance to human aging. 
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Introduction  

Nutrition has long been recognized as an important factor for influencing both the 

healthspan and lifespan in a variety of animals, including humans (Weindruch,1992; Walford, et 

al., 1996).  Thus, within the field of aging research, use of known nutritional interventions that 

act as anti-aging therapies are employed as a tool to better understand the biology of aging.  One 

such intervention is Dietary Restriction (DR), a robust method for extending lifespan and 

promoting vitality which is applicable through a broad range of taxa from yeast to mammals.  In 

addition to extending lifespan, DR slows the progression of many age-related pathological 

conditions including cancer, diabetes, cardiovascular and neurodegenerative disease (Masoro, 

2003).  DR is defined as a reduction of particular or total nutrient intake without causing 

malnutrition (Weindruch, 1992; Bradley,et al. 1997; Katewa et al., 2010). DR is accomplished 

through a reduction in total caloric intake (CR), restriction of a particular class of nutrients, or 

temporal variation of food intake (Rogers et al., 2006).  Understanding the underlying 

mechanism for how DR exerts its effects holds great promise for the development of drugs and 

preventative therapies which target age-related loss of function and disease. 

Aging of Skeletal Muscles 

Amid the plethora of age-associated pathologies, the decline of muscle’s cellular 

structure and function is a hallmark of the aging organism.  Skeletal muscle tissue is the most 

abundant tissue in the body.  It is significantly affected by the degenerative aging process.  After 

age 40, the average adult human loses 5% of muscle mass per decade (Lenk, et al, 2010).  

Sarcopenia, which means poverty of the flesh, is characterized by a decrease in muscle fiber size 
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and number.  The etiology of sarcopenia is complex, with some known factors, and some which 

are only speculated to contribute.  Known environmental factors are a lack of both exercise and 

proper nutrition.  Other studies have emphasized muscle senescence (Nair, 2005), loss of protein 

homeostasis, (Demontis, 2010), altered hormonal status, increased apoptosis of myocytes, 

increased inflammatory cytokines, muscle mitochondrial damage, and oxidative stress (Flack, et 

al. 2011) as playing causal roles. Due to various etiological factors, an overall imbalance 

between muscle protein synthesis and degradation occurs.  This alteration in skeletal muscle 

turnover causes higher rates of muscle protein degradation (Koopman, Van Loon, 2009).  Muscle 

structural decline is accompanied by muscle functional decline. Muscular strength has a direct 

inverse relationship with risk of death from all causes and cancer (Ruiz, et al. 2012). Loss of 

muscular strength is associated with a significant reduction in quality of life and an increased 

risk of disability and functional dependence (Augustin, Partridge, 2009).  A decline in muscle 

structure and function is the underlying cause behind slow gait speed, poor balance, frailty, and 

falls in the elderly (Janssen, et al. 2004), which ultimately leads to a greater risk of 

hospitalization and institutionalization.   

As muscle mass is lost and muscle oxidative capacity declines, the risk of glucose 

intolerance increases.  Glucose intolerance is the lack of ability for the body to efficiently 

metabolize blood sugar. This condition leads to Type II Diabetes and the metabolic syndrome, 

which includes excess weight, hypertension, and hyperlipidemia.  Both Diabetes and Metabolic 

Syndrome put one at increased risk of cardiovascular comorbidities (Huang, 2009).  In 2000, the 

health care costs for sarcopenia and its numerous repercussions were estimated to total $18.5 

billion in the United States (Janssen, et al. 2004).  As the aging population grows and average 

life expectancy continues to rise, the public health implications are staggering. 
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Muscle Aging Research with Drosophila melananogaster 

Like humans, the fruit fly, Drosophila melanogaster, undergoes the age-associated 

decline in muscle structure and function (Augustin, Partridge, 2009).  The striated muscles of the 

fruit fly resemble vertebrate skeletal muscles in structure, function, and protein composition.  

The fruit fly is small in size, matures rapidly, has a short lifespan, and is amenable to genetic 

manipulation, making it a useful model for the study of muscle aging. The molecular 

mechanisms that control lifespan in Drosophila are highly conserved in more complex 

organisms, including humans.  Manipulation of these pathways using the UAS-Gal-4 system 

makes it possible to determine the role of a particular gene in biological function.   

The UAS-Gal-4 System 

The UAS-Gal-4 System is a well-established means of determining gene function in 

Drosophila by blocking or over-expressing the transcription of a particular gene (Phelps, Brand, 

1998). It allows for the selective expression of a gene of interest both in a spatial and temporal 

manner.  In this system, spatial control is accomplished with the selection of a driver line.  The 

driver line directs expression of the yeast transcriptional activator protein, Gal-4, to a particular 

cell or tissue.  In the Gal-4 driver line, the activator protein is present but has no effect.  In the 

UAS responder line, the target gene is present but transcriptionally silent.  Transcription of the 

target gene requires the presence of the Gal-4 protein.  Crossing the Gal-4 driver line fly with a 

UAS responder line fly joins the activator protein to the target gene, and expression is effective 

in the progeny. To induce expression of a gene post-development, an inducible Gene Switch 

driver is selected.  The Gal-4 protein becomes active only in the presence of the steroid hormone 
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RU486, thereby rendering two sample populations: one without the drug, which serves as a 

control, and one with the drug, which has gene silencing or over-expression.   

Dietary Restriction in Drosophila melanogaster 

In fly research, DR is accomplished through restriction of protein.  Fly food media is 

composed of corn meal, sugar, yeast extract, and agar. By reducing yeast extract, the protein-rich 

component of the media, lifespan extension is consistently observed (Carvalho, et al. 2005; Min, 

Tatar, 2006; Mair, et al. 2005; Katewa, Kapahi, 2010).  In the Kapahi laboratory, Stock Food, 

which mimics the fly’s natural nutritional intake, is 1.5% live yeast.  DR conditions are met by 

diluting the concentration of yeast extract to 0.5%.  DR experimental conditions are contrasted to 

an enriched protein diet, termed Ad Libitum (AL), containing 5% yeast extract. 

The Relationship Between Dietary Restriction and Activity 

DR enhances spontaneous movement-related activity across a wide variety of species 

(Bross, et al., 2005).  This phenomenon is hypothesized to result from the evolutionary theory 

that when nutrients are limited, a metabolic shift occurs from reproduction and growth towards 

somatic maintenance, thus facilitating foraging behavior (Katewa, et al, 2012).  However, the 

genetic and biochemical mechanisms responsible for the increase in movement in response to 

DR are not well understood. DR may lead to increased activity levels by causing changes in 

myofibril proteins, enhancement of mitochondrial function (Zid et al., 2009), and/or 

enhancement of neuromuscular dynamics (Augustin et al., 2009).  Or conversely, the increased 

activity levels associated with DR may be responsible for the changes in myofibril proteins, 

enhancement of mitochondrial function, and/or neuromuscular dynamics (Barres, et al. 2012).  In 
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either case, elucidation of the genetic and biochemical mechanisms by which diet and activity 

ultimately influence lifespan begins with closer examination of muscle tissue metabolism. 

 DR alters translation of genes related to muscle structure and function. It has been 

suggested that these muscle-specific genes, in turn, may play a role in mediating healthy aging 

(Bauer, et al. 2010).  In support of this hypothesis it has been found that enhanced fat metabolism 

in the muscle tissue is partially responsible for the protective effects of DR.  In a recent study 

(Katewa, et al. 2012), wild type flies were subjected to DR and AL feeding conditions and global 

gene expression was measured via microarray, whereby it was determined that genes involved in 

fat metabolism, movement, and neuronal dynamics are major biological processes regulated by 

DR.  Functional characterization of fat metabolism genes yielded the conclusion that enhanced 

fat turnover specifically in muscle tissue is required for the lifespan extension effect of DR. 

Additionally it was found that enhanced movement partially mediated lifespan extension upon 

DR.  Both flies with genetically ablated wings and flies with clipped wings show a modest 

lifespan extension as compared to the control under DR conditions.  Taken together, these data 

suggest that increased muscle activity is due to enhanced fat turnover in the muscle tissue and 

that this plays a causal role in the health protective effects of DR (Katewa, et al. 2012).  

The Importance of Nutrient Sensing 

In further support of muscle tissue dynamics playing a pivotal role in aging, it has 

become apparent that evolutionarily conserved nutrient sensing pathways play a key role in 

mediating lifespan extension and that they do so through specific tissues, including muscle 

(Kapahi, et al. 2004, Demontis, Perrimon, 2010).  There is strong evidence from research with 

Drosophila that the Target of Rapaymycin (TOR) pathway is one of these key pathways (Kapahi, 
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et al. 2004, Zid, et al. 2009).  The TOR pathway integrates nutrient and environmental signals to 

mediate growth and metabolism. One of the strongest indications of an intervention-genetic or 

environmental- impacting organismal aging is to show that it extends lifespan.  Overexpression 

of several genes in the TOR complex 1(TORC1) pathway extend lifespan in Drosophila, 

including the tuberous sclerosis complex proteins Tsc1, Tsc2  (Kapahi et al., 2004).  The 

translational repressor, 4E-BP (eukaryotic initiation factor eIF4E binding protein), a downstream 

target of TORC1, has also been shown to mediate lifespan extension through DR.  4E-BP null 

mutant flies show a diminished DR response, while over-expression of 4E-BP extends lifespan in 

flies fed the AL diet (Zid, et al. 2009).  Induction of mitochondrial processes upon DR was 

shown to be dependent on the activity of 4E-BP.  

Furthermore, 4E-BP over-expression in muscles significantly extends lifespan and 

preserves muscle function (Demontis, et al, 2010).  These data suggests that 4E-BP preserves 

muscle function by regulating muscle proteostasis via the autophagy/lysosome pathway of 

protein degradation (Demontis, et al, 2010).  It is proposed that 4E-BP signaling in muscles plays 

a pivotal role in systemic metabolic regulation, regulating food intake and insulin release 

(Demontis, et al, 2010). These data provide more strong evidence for the idea that healthspan and 

lifespan are dependent on metabolic events in the muscle tissue.  These events, in turn, depend 

on nutrient sensing pathways, and have a number of beneficial effects on distal tissues 

(Demontis, et al, 2010; Katewa, et al 2012). 
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Hypothesis and Rationale 

Based on research in the host laboratory and the other cited studies, it is clear that Dietary 

Restriction extends lifespan and also increases muscle activity in Drosophila.  My hypothesis is 

that metabolic changes in muscle tissue play a causal role in mediating the lifespan extension 

effects of DR. The changes that occur are partially mediated by the nutrient sensing TOR 

pathway and its downstream signaling components.  In this thesis, I ask what happens to the 

relationship between lifespan and activity when nutritional manipulations and laboratory 

selection for lifespan are simultaneously applied.   

Dietary	  
Restriction

Increased	  
Activity

Lifespan	  
Extension

Muscle	  Tissue	  

 

 

 

To address this inquiry, I systematically examined genes involved in muscle metabolism 

for influence on DR mediated lifespan extension.  Candidate genes were selected based on their 

relationship to the structure and function of muscle tissue, or on their translational response to 
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dietary restriction.  Initially, these genes were screened by conducting the lifespan assay. Genes 

that manifested a lifespan change upon high or low yeast diets were selected for further study. In 

a second screen, genes that exhibited starvation resistance and/or increased spontaneous activity 

were selected for further studies.  In a third project, the translational repressor 4E-BP was over-

expressed in the muscle tissue to better understand the role that it plays in lifespan and activity.   

 

Results 

A Screen to identify Genes that Modulate Lifespan in a Nutrient-Dependent Manner 

In initial lifespan screening, inhibition of candidate genes was achieved using a 

ubiquitously expressing driver strain or a muscle-specific driver strain, depending on the gene. 

Dietary Restriction leads to an increase in lifespan.  Lifespan extension or reduction compared to 

the control indicates that the gene of interest plays a role in mediating lifespan.   If down-

regulation of a target prevented DR mediated lifespan extension or extended AL lifespan, the 

lifespan assay was then repeated with the drug-inducible ubiquitous driver.  As shown in Table 

1, of the 13 genes related to muscle structure and function, two were selected for further studies 

based on lifespan results: Wings UpA with an AL increase of 41%; Nautilus with a DR increase 

of 36% and an AL increase of 24%. 

Note: For MHC-Gal-4 crosses, the control was Mhc-Gal4 x W1118, for Da-Gal-4 

crosses, the control was Da-Gal4 x W1118. 
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        Average 
Lifespan 

Median 
Survival 

    
Gene Function Driver Food N % change 

                

**Wings UpA 
CG7178 

Tropomyosin 
binding            

Actin binding  
Muscle organ 
development 

MHC 

DR 
Control 69.8 71 146 

-13% DR 
RNAi 59.9 62 132 

AL 
Control 49 39 149 

**41% AL 
RNAi 55.7 55 135 

UAS Mef2 
Myocyte 

Enhancer Factor 
2 

 Trancscription 
factor Muscle 

fiber 
development 

MHC 

DR 
Control 69.8 71 146 

-39% DR 
RNAi 49.3 43 140 

AL 
Control 49 39 149 

-31% AL 
RNAi 33.9 27 141 

Lame Duck 
CG4677 

 Trancscription 
factor  Da 

DR 
Control 63.5 58 126 22% 

DR 
RNAi 67.1 71 137   

AL 
Control 36.3 33 138 30% 

AL 
RNAi 43.2 43 139   

Flightin CG7445 

Myosin thick 
filament 
assembly        

Sarcomere 
organization 

Da 

DR 
Control 72 58 135 

2% DR 
RNAi 58.9 59 103 

AL 
Control 44 33 132 

3% AL 
RNAi 39.9 34 117 

**Nautilus 
CG10250 

Transcription 
factor Muslce 

organ 
development 

Da 

DR 
Control 72 58 135 

**36% DR 
RNAi 77.6 79 154 

AL 
Control 42 33 132 

**24% AL 
RNAi 46.1 41 138 

Table 1. Candidate Muscle Genes Lifespan Results 
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**Nautilus 
CG10250 

Transcription 
factor Muslce 

organ 
development 

MHC 

DR 
Control 69.8 71 146 

**14% DR 
RNAi 72 81 147 

AL 
Control 49 39 149 

**54% AL 
RNAi 57 60 145 

Slouch CG6534 

Transcription 
factor  Muscle 

cell fate 
determination 

Da 

DR 
Control 63.5 58 126 

26% DR 
RNAi 73.7 73 146 

AL 
Control 36.3 33 138 

24% AL 
RNAi 38.5 41 146 

Upheld CG7107 

Calcium ion 
homeostasis 
Muscle cell 
homeostasis  

Thin filament 
assemby 

MHC 

DR 
Control 

69.8 71 146 
23% DR 

RNAi 
73.4 87 135 

AL 
Control 

49 39 149 
36% AL 

RNAi 50 53 144 

Muscle Protein 20 
CG4696 

Calcium ion 
binding   Actin 

binding    
Regulation of 

cell shape 

MHC 

DR 
Control 

69.8 71 146 
1% DR 

RNAi 68.4 72 143 

AL 
Control 

49 39 149 
3% AL 

RNAi 38.8 40 135 

Tropomyosin 2 
CG4843 Actin binding MHC 

DR 
Control 

69.8 71 146 
23% DR 

RNAi 81.9 87 146 

AL 
Control 

49 39 149 
56% AL 

RNAi 58.6 61 139 

Muscle Specific 
Protein 300 
CG33715 

Actin binding MHC 

DR 
Control 

69.8 71 146 
-3% DR 

RNAi 67.1 69 154 

AL 
Control 

49 39 149 -15% 
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AL 
RNAi 34.6 33 115 

Myosin Heavy 
Chain CG17927 

Myosin thick 
filament 
assemby            

Locomotion 

MHC  

DR 
Control 

69.8 71 146 
-10% DR 

RNAi 58.88 64 150 

AL 
Control 49 39 149 

-8% AL 
RNAi 38.5 36 142 

**Myosin Light 
Chain           

CG2184 

ATPase                
Muscle System 

Process 
MHC 

DR 
Control 69.8 71 146 

28% DR 
RNAi 87.7 91 143 

AL 
Control 49 39 149 

**92% AL 
RNAi 68.9 75 126 

Troponin C at 
73F         CG7930 

Calcium ion 
binding   MHC 

DR 
Control 69.8 71 146 

21% DR 
RNAi 82.5 86 149 

AL 
Control 49 39 149 

26% AL 
RNAi 48 49 135 

Myosin Heavy 
Chain CG17927 

Myosin thick 
filament 
assembly             

Locomotion 

DaGS 

DR 
Control 43.8 45 154 

-11% DR 
RNAi 39 40 155 

AL 
Control 31.3 29 145 

-17% AL 
RNAi 25.9 24 147 

Upheld CG7107 

Calcium ion 
homeostasis 
Muscle cell 
homeostasis  

Thin filament 
assemby 

DaGS 

DR 
Control 55.3 55 118 

0% DR 
RNAi 56 55 124 

AL 
Control 30 32 96 

-5% AL 
RNAi 29.8 30.5 106 

Wings UpA 
CG7178 

Tropomyosin 
binding  Actin 

binding   
Sarcomere 

DaGS 

DR 
Control 59.8 63 158 

-2% DR 
RNAi 58.5 62 154 
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organization AL 
Control 34.3 33 151 

0% AL 
RNAi 33.1 33 165 

Wings UpA 
CG7178 

Tropomyosin 
binding  Actin 

binding   
Sarcomere 

organization 

Act5c GS 

DR 
Control 79.2 81 148 

9% DR 
RNAi 84.7 88 159 

AL 
Control 45.2 46 150 

0% AL 
RNAi 45.7 46 153 

Nautilus 
CG10250 

Transcription 
factor Muslce 

organ 
development 

DaGS 

DR 
Control 47.5 48 154 

4% DR 
RNAi 48.2 50 150 

AL 
Control 38.4 36 172 

-11% AL 
RNAi 34.9 32 147 

 

As shown in Table 2, of the three DR-responsive candidate genes that were screened, two 

yielded significant results when crossed with the Da-Gal4 driver: Frizzled 2 with an AL increase 

of 42%, Wnt5 with a DR increase of 47% and an AL increase of 64%.  
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        Average 
Lifespan 

Median 
Survival 

    
Gene Function Driver Food N % change 

    

**Frz2 CG9739 
Wnt recepter 

signalling 
pathway 

Da 

DR 
Control 63.5 58 126 -3% DR 
RNAi 52.4 56 144 

AL 
Control 36.3 33 138 **42% AL 
RNAi 44.5 47 151 

Wishful Thinking 
CG10776 

Neuromuscular 
junction 

development 
Da 

DR 
Control 63.5 58 126 5% DR 
RNAi 61.8 61 145 

AL 
Control 36.3 33 138 6% AL 
RNAi 35.5 35 145 

**Wnt5 CG6407 
Wnt receptor 

signaling 
pathway 

Da 

DR 
Control 63.5 58 126 **47% DR 
RNAi 81.9 85 139 

AL 
Control 36.3 33 138 **64% AL 
RNAi 53.4 54 139 

**Frz2 CG9739 
Wnt recepter 

signalling 
pathway 

DaGS 

DR 
Control 71.6 73 162 

0% DR 
RNAi 69.8 73 130 

AL 
Control 39.42 41 156 

-17% AL 
RNAi 33.97 34 144 

Frz2 CG9739 
Wnt recepter 

signalling 
pathway 

Act5c 
GS 

DR 
Control 83.4 85 139 

0% DR 
RNAi 83.6 85 142 

AL 
Control 54.6 53 133 

0% AL 
RNAi 54.7 53 109 

Table 2.   Candidate Microarray Genes Lifespan Results 
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Wnt5 CG6407 
Wnt receptor 

signaling 
pathway 

DaGS  

DR 
Control 65 67 155 

-7% DR 
RNAi 60.9 62 152 

AL 
Control 41.2 41 159 

2% AL 
RNAi 44 42 162 

Wnt5 CG6407 
Wnt receptor 

signaling 
pathway 

Act5c 
GS 

DR 
Control 77 80 136 

-5% DR 
RNAi 73 76 157 

AL 
Control 39 41 132 

0% AL 
RNAi 42 41 146 

Wishful Thinking 
CG10776 

Neuromuscular 
junction 

development 
DaGS 

DR 
Control 60.5 61 188 

-5% DR 
RNAi 56.1 58 196 

AL 
Control 25.2 26 204 

-12% AL 
RNAi 23.8 23 185 

 

 

Repeat of the Lifespan Assay Failed to Reproduce Significant Results 

Using both the DaGS-Gal4 and the Act5c-GS-Gal4 drug-inducible ubiquitous drivers to 

repeat the lifespan assays did not yield the same results, however.  For all four of the candidate 

genes, no significant effect was observed between the Control and the experimental (Figure 1). 
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A B

C D

E F

 

 

 

 

 

 

Figure 1. Repeat Lifespans on Candidate Genes Failed to Reproduce Significant 
Results.  Median life span was calculated from Kaplan-Meier survival analysis of female flies 
upon RNAi of candidate genes in whole body under DR (light red) and AL (dark red) conditions 

(A) Effect of WingsUpA RNAi on DR-dependent lifespan extension ([+/+; +/+; Da-GS/ CG7178]) 

(B) Effect of Nautilus RNAi on DR-dependent lifespan extension ([+/+; +/+; Da-GS/  CG10250])  

(C) Effect of Frizzled2 RNAi on DR-dependent lifespan extension ([+/+; +/+; Da-GS/  CG9739]) 

(D) Effect of Wnt5 RNAi on DR-dependent lifespan extension ([+/+; +/+; Da-GS/  CG6407]) 

(E) Effect of Frizzled2 RNAi on DR-dependent lifespan extension ([+/+; +/+;  Act5c-GS/ CG9739])  

(F) Effect of Wnt5 RNAi on DR-dependent lifespan extension ([+/+; +/+;  Act5c-GS/ CG6407 
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A New Screen to Identify Genes that Modulate Lifespan in a Nutrient Dependent Manner 

In a second screen based on starvation resistance and activity levels, positive hits were 

determined based on responsiveness to both of these criteria as well as Translational State Array 

Analysis (TSAA) and known gene function. The Starvation Assay is used as a stress test and also 

may be thought of as an abbreviated representation of lifespan.  Measurement of spontaneous 

activity is essential in making a correlation between a gene and activity levels.  All genes were 

inhibited using the muscle specific driver, Mhc-Gal4.  Of the 29 genes screened, three were 

selected for further studies: Fumble, Nemo, and Nedd2-like Caspase.  

 

Genotype Biological 
Process Food Median 

Survival N Mutant 
DR/AL 

Mutant 
DR/AL 

Relative to 
Control 
DR/AL 

MHC x 
W1118 Control 

DR RNAi 66 89 
1.5 1.5 

AL RNAi 43 98 

**Fbl CG5725 
 Triglyceride 
homeostasis    
Locomotion 

DR RNAi 86 74 
1.3 0.9 

AL RNAi 64 73 

Slob CG43756 

Starvation 
response  

Neuromuscular 
dynamics 

DR RNAi 135 72 
2.1 1.4 

AL RNAi 65 71 

Fst CG9434 Cold response 
DR RNAi 66 69 

1.6 1.0 
AL RNAi 42 74 

**Nc     
CG8091 

Programmed 
cell death   
Biological 

DR RNAi 119 96 2.6 1.7 

Table 3. Candidate Microarray Genes Starvation Results 



24	  
	  

regulation AL RNAi 46 89 

Eip7EF    
CG32180 

Transcription 
factor    

Autophagy 

DR RNAi 92 93 
1.9 1.2 

AL RNAi 49 98 

Trp-like  
CG18345 

Calcium ion 
transport             

Ca signaling 

DR RNAi 71 93 
1.5 1.0 

AL RNAi 46 94 

Loqs CG6866 
Gene silencing                 

Nervous sys 
development 

DR RNAi 90 95 
2.0 1.3 

AL RNAi 46 99 

CG34781 Unknown 
DR RNAi 119 73 

2.2 1.4 
AL RNAi 55 94 

Bif       
CG1822 

Axon 
extension                    

Axon guidance 

DR RNAi 88 101 
2.0 1.3 

AL RNAi 45 111 

Fax  CG4609  Axonogenesis          
Neurogenesis 

DR RNAi 90 102 
2.0 1.3 

AL RNAi 45 102 

Lola CG10252 Unknown 
DR RNAi 65 99 

1.6 1.0 
AL RNAi 41 102 

CG10959 

Zinc ion 
binding                

Nucleic acid 
binding 

DR RNAi 90 97 
2.1 1.4 

AL RNAi 42 86 

Dgrn 
CG10981 

Regulation of 
protein binding 

DR RNAi 90 101 
2.1 1.4 

AL RNAi 42 98 

Adar 
CG12598 

Locomotory 
process       

Response to 
stimulus 

DR RNAi 93 99 
2.2 1.4 

AL RNAi 42 100 

Hs3st-B     
CG7890 

Post-
embryonic 

organ 
development 

DR RNAi 98 95 
1.5 1.0 

AL RNAi 64 97 
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CG9883 Unknown 
DR RNAi 110 135 

1.7 1.1 
AL RNAi 64 100 

CG10621 Unknown 
DR RNAi 88 96 

2.1 1.4 
AL RNAi 42 95 

CG31782 Unknown 
DR RNAi 66 103 

1.6 1.0 
AL RNAi 42 100 

U2A CG1406 Mitosis 
DR RNAi 88 99 

2.1 1.4 
AL RNAi 42 96 

CG3408 Muscle cell 
homeostasis 

DR RNAi 90 104 
1.4 0.9 

AL RNAi 66 73 

CG5352 

Gonad 
development          

Mitotic spindle 
organization 

DR RNAi 66 98 
1.6 1.0 

AL RNAi 42 99 

CG6854 Neurogenesis 
DR RNAi 90 100 

2.0 1.3 
AL RNAi 46 106 

CG11398 Unknown 
DR RNAi 114 99 

2.6 1.7 
AL RNAi 44 100 

UK114  
CG15261 Protein folidng 

DR RNAi 66 104 
1.6 1.0 

AL RNAi 42 95 

Loqs CG6866 

Central 
nervous sys 

dev     MiRNA 
metabolic 
proceses 

DR RNAi 69 88 
1.6 1.0 

AL RNAi 43 92 

Nbr CG9247  Production of 
miRNA 

DR RNAi 89 98 
1.3 0.9 

AL RNAi 66 99 

**Nmo    
CG7892 

Wnt receptor 
signaling     
Synaptic 

growth at NMJ 

DR RNAi 114 89 
2.5 1.7 

AL RNAi 45 96 
MHC (OC) x 

W1118 Control 
DR RNAi 89 79 

1.3 1.3 
AL RNAi 66 96 
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4EBP UAS 
(OC) 

Lifespan, 
mitochondrial 

translation 

DR RNAi 88 104 
1.3 1.0 

AL RNAi 66 106 

Fbl CG5725 
(OC) 

Triglyceride 
homeostasis   
Locomotion 

DR RNAi 93 99 
1.4 1.0 

AL RNAi 66 102 

Nc    CG8091 
(OC) 

Programmed 
cell death   
Biological 
regulation 

DR RNAi 115 72 
1.7 1.3 

AL RNAi 66 97 

Nmo (OC) 

Wnt receptor 
signaling     
Synaptic 

growth at NMJ 

DR RNAi 89 100 
1.3 1.0 

AL RNAi 66 106 

Slob CG43756 
(OC) 

Starvation 
response  

Neuromuscular 
dynamics 

DR RNAi 119 108 
2.5 1.8 

AL RNAi 48 91 

Dilp6 
Regulation of 

organism 
growth 

DR RNAi 113 100 
1.7 1.3 

AL RNAi 66 103 

Hip14 Synaptic 
transmission DR RNAi 80.5 98 1.2 0.9 

 

 

 

 

 

 

 

Relative Change in Median Survival was Determined by the Ratio of Median Survival in the 
Mutant Compared to the Control 

<1 = DR Reduction or AL Extension 

>1 = DR Extension or AL Reduction  

1 = No Effect 
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Three Candidate Genes Emerge with Dramatically Different Biological Functions 

Fumble is a pantothenate kinase.  This type of enzyme phosphorylates pantothenate, 

which is involved in the Coenzyme A biosynthetic pathway.  It has known biological functions 

including involvement in locomotion (Wu, et al. 2009) and triglyceride homeostasis (Bosveld, et 

al., 2008). 

 Nedd2-like Caspase is an endopeptidase.  This type of enzyme breaks peptide bonds of a 

nonterminal amino acid (Yan, et al., 2006).  It has known biological functions including central 

nervous system development (Chew, et al. 2004), autophagic cell death (Gorski et al, 2003; Lee 

et al., 2011; Yang et al., 2010), and determination of adult lifespan (Bauer et al., 2005) 

Nemo is a protein kinase.  Protein kinases are enzymes that phosphorylate proteins.  It 

has known biological functions including positive regulation of synaptic growth at the 

neuromuscular junction (Merino, et al. 2009).  

To further characterize the genes of interest, I examined the changes in mRNA translation 

upon DR.  Because initiation is the rate limiting step for the translation of most mRNA’s, mRNA 

translational rate can be inferred from the number of ribosomes that are recruited (Sonenberg et 

al, 2001).  For the gene, Nemo, 40, 60, 80S Ribosomes and Polysomes decreased relative to the 

total, suggesting that the translational rate of mRNA decreased under DR conditions (Figure 2A).  

For the gene, Fumble, 40, 60, 80S Ribosomes and Polysomes increased relative to the total, 

suggesting that mRNA increased in response to DR (Figure 2B).  For the gene, Nedd2-like 

Caspase, the Polysomal fractions decreased relative to the total, suggesting that mRNA levels 

decreased in response to DR (Figure 3C).   
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These data gave me some indication of what results I might expect from future assays. 

When RNAi is used against upregulated and downregulated targets, the expectation is that the 

diet will produce different outcomes.  RNAi against upregulated proteins should prevent the DR-

mediated increase in longevity, activity, and starvation resistance and would cause a similar 

decrease in AL-fed flies.  Alternatively, RNAi against downregulated proteins should not alter 

Figure 2.  mRNA Translation-Associated Changes Upon DR of candidate genes.  
Polysomal distribution of mRNAs of young adult female flies on 5% YE and 0.5% YE showing 
the DR/AL ratio of ribosomal subunits and polysomal fractions 

(A)Nemo ribosomal and polysomal fractions decrease relative to the total 

(B) Fumble ribosomal and polysomal fractions increase relative to the total 

(C) Nedd2-like Caspase polysomal ractions decrease relative to the total 
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DR-mediated increase in lifespan, and should extend AL-fed lifespan, increase activity, and 

starvation resistance.   

 

 

Gene TSAA upon DR 
 

Interpretation Expected Outcome 

Nmo  Ribosomes and Polysomes 
down relative to Total 

 
Translation of mRNA 

decreasing 

No effect on DR-mediated 
increase in lifespan.  Extend 
AL-fed starvation, increase 

activity, lifespan. 

Fbl  Ribosomes and Polysomes 
up relative to Total 

 
Translation of mRNA 

increasing 

Prevent DR-mediated 
increase in starvation, 

activity, lifespan. Same in AL 

Nc   Polysomes down relative to 
Total 

 
Translation of mRNA 

decreasing 

No effect on DR-mediated 
increase in lifespan.  Extend 
AL-fed starvation, increase 

activity, lifespan. 
 

In order to verify initial results, a second starvation assay was run on the three candidates.  

At the time of the initial starvation screening, the Mhc-Gal4 driver being used in the host 

laboratory was lacking genetic diversity.  Inbred driver lines, though they still enable targeted 

gene expression, produce a phenotype that is problematic.  For this reason, periodic out-crossing 

of the line is necessary.  By out-crossing, the genetic background of a wild strain is bred into the 

driver line.  When the out-crossed driver line became available for use in the laboratory, all 

crosses were then carried out with it.  As shown in Figure 3, starvation resistance between the 

non-out-crossed and the out-crossed flies yielded very different results.   

 

Table 4. Summary of TSAA Results and Expected Outcomes for 

Candidate Genes 
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Figure 3. Muscle-Specific Inhibition of Candidate Genes Influences Starvation 
Resistance in a Nutrient-Dependent Manner in D. melanogaster Kaplan Meir survival 
analysis for starvation resistance in RNAi female flies (solid line) and control flies (dashed line).  
Control used was W1118 Mhc-Gal4/+ (A-E) 

(A) Nemo (CG7892-RNAi/Mhc-Gal4)  

(B) Nemo with out-crossed driver (CG7892-RNAi/Mhc-Gal4)  

(C) Fumble (CG5725-RNAi/Mhc-Gal4)  

(D) Fumble with out-crossed driver (CG5725-RNAi/Mhc-Gal4)  

(E) Nedd2-like Caspase with out-crossed driver (CG8091-RNAi/Mhc-Gal4) 
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Inhibition of the gene Nemo in the non-out-crossed Mhc-Gal4 background resulted in 

both AL and DR reduction in starvation resistance (Figure 2A).  Inhibition of Nemo in the out-

crossed Mhc-Gal4 background resulted in no significant effect on starvation resistance (Figure 

2B).  Inhibition of Fumble resulted in both an AL and DR reduction in starvation resistance 

when expressed in the non-out-crossed Mhc-Gal4 background (Figure 2C).  When inhibited in 

the out-crossed Mhc-Gal4 background, Fumble exhibited AL extension on starvation resistance 

(Figure 2D).  Inhibition of the gene Nedd2-like Caspase was only carried out in the out-crossed 

Mhc-Gal4 background, and it exhibited a slight AL extension and a DR extension in starvation 

resistance.   

Next, activity levels were measured in the three candidate genes.  Two controls were 

used: Mhc-Gal4 crossed with the wild type fly (W1118), and W1118 crossed with the mutant.  

This was done to control for the Gal4 protein and the mutant, respectively.  After out-crossing, 

both the Mhc-Gal4 driver and the mutant line should have had the same genetic background-that 

of a wild type fly.  Therefore, in theory, there should have been very little phenotypic difference 

between Mhc-Gal4  x W1118 and Mhc-Gal4 x mutant because they should have had the same 

genetic background.  However, due to decreased confidence in the genetic interactions between 

the Gal4 protein of the driver and the transgene, the third control was used.  By crossing a wild 

type fly with a fly carrying the transgene, the progeny did not express the transgene but still had 

the transgene in their genotype.  The third control was used to evaluate discrepancy in genetic 

interactions between the Gal4 protein of the driver and the transgene.    Using this third control 

ensured that the phenotypic effects observed in crossing Mhc-Gal4 with each transgene were not 

just due to hybrid vigor.   
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Inhibition of Nemo led to an AL reduction in activity compared to both Controls  

Activity data failed to show trends or statistical differences.  Furthermore, interpretation 

of the experimental groups was ambiguous due to the differences in the activity of the two 

controls.    Inhibition of Nemo led to an AL reduction in activity compared to both Controls and 

a DR reduction compared to the Mhc Control (Figure 3A).  Fumble showed an AL increase in 

activity compared to W1118 Control, and an AL reduction in activity compared to the Mhc-Gal4 

Figure 4.  Muscle-specific Inhibition of Candidate Genes Influences Spontaneous 
Activity in a Nutrient-Dependent Manner in D. melanogaster.  Controls used were w1118; 
Mhc-Gal4/+ (A-C) and w1118; CG7892/+ (A), w1118; CG5725/+ (B), w1118; CG8091/+ (C) 

(A)Effect of Nmo (CG7892-RNAi/Mhc-Gal4) on spontaneous activity  

(B)Effect of Fbl (CG5725-RNAi/Mhc-Gal4) on spontaneous activity 

(C) Effect of Nc (CG8091-RNAi/Mhc-Gal4) on spontaneous activity 
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Control (Figure 3B).  Fumble showed a DR decrease in activity compared to the Mhc-Gal4 

Control, and no effect compared to the W1118 Control (Figure 3B).  Inhibition of Nedd2-like 

Caspase showed an AL increase in activity compared to the W1118 Control, and a decrease in 

activity compared to the Mhc-Gal4 Control (Fig 3C).  Nedd2-like Caspase showed a reduction in 

activity compared to the Mhc-Gal4 Control, and no effect upon DR compared to the W1118 

Control (Figure 3C).   

Next, the question was asked whether changes in starvation resistance and spontaneous 

movement could be correlated with lifespan in the candidate genes.   
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Figure 5.  Inhibition of Two Candidate Genes Extends Lifespan upon DR 
in D. melanogaster .  Median life span was calculated from Kaplan-Meier survival 
analysis of female flies upon RNAi of candidate genes in muscle tissue under DR 
(light red) and AL (dark red) conditions.  Controls used were w1118; Mhc-Gal4/+ 
(blue, dashed lines) (A-C) and w1118; CG7892/+ (A), w1118; CG5725/+ (B), w1118; 
CG8091/+ (C) (green, dashed lines) 

(A)The effects of Nmo (CG7892-RNAi/Mhc-Gal4) on lifespan   

(B)The effects of Fbl (CG5725-RNAi/Mhc-Gal4) on lifespan   

(C)The effect of Nc (CG8091-RNAi/Mhc-Gal4) on lifespan  
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The gene, Nemo exhibited lifespan extension both in DR and AL conditions.  The 

percentage increase in lifespan upon DR was 13% and 21% compared to W1118 and Mhc 

Control, respectively.  The percentage increase in lifespan in the nutrient-rich condition was 29% 

and 39% compared to W1118 and Mhc Control, respectively.   

The gene, Fumble exhibited lifespan extension in both DR and AL conditions.  The 

percentage increase in lifespan upon DR was 26% and 6% compared to W1118 and Mhc 

Control, respectively.  The percentage increase in lifespan in the nutrient-rich condition was 39% 

and 13% compared to the W1118 and Mhc Control, respectively. 

The gene, Nedd2-like Caspase exhibited a negligible lifespan effect compared to both 

Controls.  The percentage increase in lifespan upon DR was 2% and 9% compared to the W1118 

and Mhc Control, respectively.  The percentage increase in the lifespan in the nutrient-rich 

condition was 10% and 4% compared to W1118 and Mhc Control, respectively.   

To investigate whether the candidate genes would influence the age-related decline in 

muscle function, activity measurements were taken over the lifespan. 
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Figure 6.  Inhibition of Candidate Genes Influences Age-Related Decline in 
Muscle Function Age-dependent measurement of total activity in female flies.  Daily activity 
was measured in the Drosophila activity monitors. Controls used were w1118; Mhc-Gal4/+ 
(blue, dashed lines) (A-C) and w1118; CG7892/+ (A), w1118; CG5725/+ (B), w1118; 
CG8091/+ (C) (green, dashed lines) 

(A)Total activity in Nmo RNAi  (CG7892-RNAi/Mhc-Gal4)  

(B)Total activity in Fbl RNAi (CG5725-RNAi/Mhc-Gal4) 

(C)Total activity in Nc RNAi (CG8091-RNAi/Mhc-Gal4) 
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Similar to Day 10, interpretation of activity over the lifespan was ambiguous.  The gene, 

Nmo decreased activity in the DR condition over the lifespan compared to the Mhc Control, and 

caused no effect when compared to the W1118 Control.  Of note, however, is that activity 

increased starting at Day 46 and increased compared to both Controls as the flies aged. In the AL 

condition, there was no effect. The gene, Fumble decreased in the DR condition compared to the 

Mhc Control, and increased in activity compared to the W1118 Control.  Of note, activity 

steadily increased until Day 51, at which point it rapidly decreased.  In the AL condition, activity 

decreased compared to the Mhc Control, and caused no effect compared to the W1118 Control.  

The gene, Nedd2-like Caspase decreased in the DR condition relative to the Mhc Control, and 

caused a slight decrease relative to the W1118 Control.  In the AL condition, there was no effect.   

Overexpression of 4E-BP in Muscle Tissue Enhances Starvation Resistance and Increases 

Spontaneous Activity in a nutrient-dependent manner 

In a third project, the effect of over-expressing d4E-BP in the muscle tissue on starvation 

resistance and activity over the lifespan was examined.   
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Figure 7. d4E-BP Overexpression in Muscle Tissue Enhances Starvation Resistance 
and Spontaneous Activity,Yet Does Not Extend Lifespan in a Nutrient-Dependent 
Manner D. melanogaster Controls used were w1118; Mhc-Gal4/+(blue, dashed lines) and 
w1118; 4E-BP/+ (purple, dashed lines) (A-D) 

(A) Starvation Resistance was enhanced in a Nutrient-Dependant Manner.    Kaplan Meir survival 
analysis for starvation resistance in RNAi female flies (solid line) and control flies (dashed line).            

(B)Spontaneous Activity taken on Day 10 of the lifespan, Activity was measured in the Drosophila 
activity monitors.  Activity increased in a Nutrient-Dependant Manner. 

(C) Age-dependent measurement of total activity.  Spontaneous Activity over the lifespan 
increased in a Nutrient-Dependent Manner.  

(D) Median life span was calculated from Kaplan-Meier survival analysis of female flies upon DR .  
(light red) and AL (dark red) conditions.  Life span was abrogated in both AL and DR flies. 
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Starvation and activity data from flies overexpressing activated d4E-BP in the muscle 

tissue indicated enhanced starvation resistance and increased activity in a nutrient-dependant 

manner in AL relative to the W1118 x 4E-BP Control.  Or alternately, activity decreased in flies 

on both AL and DR relative to the MHC x 4EBP Control.  Flies over-expressing d4E-BP 

increased in spontaneous activity on Day 9 following eclosion and over the lifespan in a nutrient-

dependant manner but the interpretation, again, is moot depending on which Control is used.  

Interestingly, lifespan was decreased in both AL (32%, 0%) and DR (20%, 20%) flies compared 

to the W1118 x 4E-BP and Mhc x 4E-BP controls, respectively.  This was an unexpected result 

because earlier studies (Zid, et al. 2009) with flies of the same genotype demonstrated lifespan 

extension in a nutrient dependent manner.   

4E-BP may play a causal role in increased movement upon DR 

In a previous study done in the host lab, enhanced muscle activity was shown to play a 

causal role in the lifespan extension effects upon DR (Katewa, et al, 2012).  To demonstrate this, 

flies with reduced movement due to clipped wings showed only a 33% extension in lifespan 

while control flies showed a 97% extension in lifespan.  Based on this finding, the question was 

asked whether overexpression of d4E-BP might influence the increased activity levels in the DR 

condition and whether this might ultimately play a causal role in lifespan extension.  To address 

this inquiry, activity, activity over lifespan, and lifespan in flies overexpressing d4E-BP with 

reduced mobility due to having their wings clipped was examined.   The hypothesis was that if 

d4E-BP plays a causal role in the increased movement upon DR, then flies overexpressing d4E-

BP with clipped wings would exhibit higher activity and also live longer than the controls.   
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On Day 9, flies overexpressing d4E-BP with clipped wings showed an increase in activity 

in the AL condition (Figure 6A).  This trend continued throughout lifespan compared to Mhc-

Gal4 Control, but not compared to W1118 x 4E-BP Control (Figure 6B).  These changes in 

Figure 8.  Muscle-specific overexpression of 4E-BP in Flies with Clipped Wings 
Increases Activity in a Nutrient-Dependent Manner But Does Not Correlate with 
Lifespan Extension Controls used were w1118; Mhc-Gal4/+ (blue, dashed lines) and w1118; 
4E-BP/+  (purple, dashed lines) (A-C) 

(A) Spontaneous Activity taken on Day 9 of the lifespan. Activity was measured in the Drosophila 
activity monitors.  Activity increased in a Nutrient-Dependant Manner. 

 (B) Age-dependent measurement of total activity in female flies.  Spontaneous Activity over the 
Lifespan increased in a nutrient-dependent manner 

(C) Effect on nutrient-dependent increase in lifespan. Median life span was calculated from 
Kaplan-Meier survival analysis of female flies upon DR (light red) and AL (dark red) conditions 
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activity correlated with a slight increase in lifespan in AL (19%) condition when compared to 

W1118 x 4E-BP Control (Figure 6C).    

Discussion 

While it is undeniable that a relationship exists between diet, activity, and lifespan, this 

relationship remains only partially understood.  In D. melanogaster, the TOR pathway and its 

downstream signaling components have proved to play a function in ageing and its effects appear 

to be mediated through muscle tissue.  By using starvation resistance, activity measurement, and 

lifespan assays, this relationship was investigated.  Some of the results hold promise, yet there 

are several caveats to the research. 

Lifespan results differ between the Da-Gal4 driver and the Da-GS-Gal4 driver 

 In the initial lifespan screen, genes of interest were first inhibited using the Daughterless-

Gal-4 ubiquitous driver or the Mhc-Gal-4 muscle tissue specific driver.  There were several 

shortcomings to using these drivers: 

1) Gene knockdown occurred at conception, and therefore may have had an effect on the 

development of the progeny 

2) The corresponding Controls (Mhc-Gal4 x W1118 or Da-Gal4 x W1118) differ in genetic 

background from the experimental flies, and therefore, results are difficult to interpret 

3) Laboratory strains lacked genetic diversity and therefore yielded phenotypic results that were 

the result of inbreeding depression; therefore not truly representing the characteristics of the gene 

of interest  
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 For these reasons, positive hits were then repeated with the drug-inducible driver, Da-GS-

Gal4 driver and in some cases, Act5c-GS-Gal4 driver.  Using Gene Switch drivers, repeated 

lifespan assays failed to produce the same results as initially observed.  The lack of repeatability 

with Gene Switch drivers indicates that there is an issue or multiple issues with the functioning 

of the drivers that is not yet completely understood.  Theoretically, Da-Gal4 driver and Da-GS-

Gal4 driver should yield the same effect on the phenotype.  The defining difference between the 

two is that Da-GS-Gal4 driver is used to inhibit the expression of a gene post-development.  This 

is advantageous in some cases because it enables the study of genes which are essential to the 

development of the organism.  Secondly, and of extreme importance, this system provides a 

control which is identical in genetic background.  Two populations of flies with the same genetic 

background are used.  One group receives the drug, achieving gene knockdown, and the other 

does not receive the drug, therefore retaining gene function.  A caveat of using this system, 

however, is that the effects of RNAi are less pronounced.  The drug-inducible driver is less 

robust in its effect on gene knockdown for a variety of reasons that are only partially understood 

(Clark, Pazpernik, 2012).  

These differences beg the question whether the results emanated from a developmental 

issue or a difference in the robustness of the inducible drivers.  To test whether it is a 

developmental issue, a future experiment would be to perform gene knockdown with the Da-

Gal4-GS driver at a time point earlier in development.  This would be carried out by exposing 

the driver line and the mutant line to the drug when setting up the cross.  Effectively, the progeny 

should have the gene knocked down from conception, thereby yielding lifespan results similar to 

that obtained with the Da-Gal4 driver.  If they do, then this would serve as support for the 

hypothesis that lifespan effects of the gene are dependent on developmental interactions.  If 
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application of the inducible system earlier in development still does not elicit lifespan effects, 

then this would suggest that the Da-Gal4 GS driver is less robust or somehow different in its 

function from the Da-Gal4 driver. 

Starvation and Activity Results differ between the non-outcrossed Mhc driver and the 

outcrossed Mhc driver 

Similar to the first screen, examining starvation resistance and activity of positive hits in 

the second screen yielded differing results in follow-up assays.  The fundamental issue lies again 

with the driver, but in this case it can be explained by different genetic backgrounds between the 

non-outcrossed Mhc-Gal4 driver used initially and the outcrossed Mhc-Gal4 driver used in later 

assays. 

The process of outcrossing is carried out to increase hybrid vigor in the laboratory strains 

used for targeted gene expression. Hybrid vigor is often discussed as the opposite of inbreeding 

depression (Birchler, et al, 2006). Over time, strains kept in laboratory stocks tend towards 

genetic divergence because low numbers of animals lead to inbreeding.  In this environment, 

harmful genetic variants become more common as the associated recessive alleles accumulate in 

the homozygous state.  When inbred strains are crossed with each other, resulting lifespans are 

often longer in the offspring simply due to hybrid vigor; thus yielding results that potentially 

misrepresent the function of the gene of interest (Partridge, et al 2007).   

 Out-crossing is also necessary to establish a genetic background that is similar between 

experimental flies and their respective controls.  For initial screening, the out-crossed muscle-

specific driver line was crossed with a mutant line which had the same genetic background-that 

of a wild type fly.  The progeny was compared to two controls which also had the wild type 
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genetic background.  Theoretically, the two controls should have exhibited similar phenotypes, 

allowing for detection of the mutant genes’ effect.  However, one of the Controls (Mhc-Gal4 x 

W1118) was unusually active, creating ambiguity and making interpretation difficult.  This 

suggests that the genetic background between the strains is not identical or that there is some 

other dynamic in the genetic background of this fly that is not understood yet.   This could be due 

to the possibility that the backcrossing was not effectively carried out in the Mhc-Gal4 driver.  

Another explanation is that the mutant lines have not been outcrossed.  Therefore, the second 

control (W1118 x Gene X) is less active.  To eliminate ambiguity in future studies, backcrossing 

of all strains should be done regularly prior to conducting assays.  To further explore muscle-

specific gene function, a drug-inducible muscle-specific driver could be used.  This would 

circumvent the issues that arise with the driver and the controls.  At this point, an Mhc-Gal4-GS 

driver is not available in the host laboratory.  

Of note, although the secondary screens with the out-crossed Mhc-Gal4 driver yielded 

less significant and in some cases entirely opposite results from the first screen, the targets still 

hold promise because they were selected by several additional criteria:  known gene function and 

TSAA analysis.  Additionally, knockdown of the genes Fumble and Nemo showed significant 

lifespan extension effects in both AL and DR (Figure 5).  These data provide further evidence 

that these genes hold promise in lifespan and healthspan studies. 
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Starvation and Activity Results were incongruent with expectations based on Translational 

State Array Analysis (TSAA) 

Previously published (Zid, et al. 2009) and unpublished data from the host laboratory suggest 

that the benefits of dietary restriction are mediated through 4E-BP.  The candidate genes for the 

second screen were selected based on data suggesting that they are translationally 4E-BP 

dependent (Figure 2).  While RNAi was used against both upregulated and downregulated 

targets, different outcomes were expected depending on the diet. 

In examining the results from the TSAA, the gene, Fumble showed that polysomal fractions 

were increased relative to the total, indicating that it is translationally upregulated in response to 

DR.  Therefore the expectation was a decrease in lifespan, activity, and starvation resistance in 

both DR and AL-fed flies.  In the initial starvation screen using the non-outcrossed Mhc-Gal-4 

driver, this expectation held true.  However, in the following starvation assay using the 

outcrossed Mhc-Gal-4 driver, AL extension and no DR effect was observed.  Interpretation of 

the activity data is similarly confounding depending on which control is used for comparison.  

Relative to the Mhc-Gal4 x W1118 control, both DR and AL-fed flies decreased in activity.  But 

relative to the W1118 x Fbl control, AL-fed flies increased in activity and DR-fed flies showed 

no effect. 

In examining the results from the TSAA, the gene, Nemo showed that polysomal fractions 

decreased relative to the total, as well as the 40S, 60S, 80S ribosomal fractions, indicating that it 

is translationally down-regulated in response to DR.  Therefore no difference was expected in 

DR-fed flies, and lifespan extension, activity increase, and starvation resistance in AL fed flies.  

In the initial starvation screen using the non-outcrossed Mhc-Gal4 driver, the opposite occurred.  
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Flies on both DR and AL fed diets showed a decrease in starvation resistance.  Interestingly, in 

the following starvation assay using the outcrossed Mhc-Gal4 driver, the expectation held true 

and mutant flies on AL diet showed starvation resistance.  Interpretation of the activity data is 

mootable depending on which control is used.  Relative to the Mhc-Gal4 x W1118 control, both 

DR and AL fed flies decreased in activity.  But relative to the W1118 x Nmo Control just AL 

fed-flies decreased in activity.  In either case, the result is counter to the expectation. 

In examining the results from the TSAA, the gene, Nedd2-like caspase showed that 

polysomal fractions were decreased relative to total, indicating that it was translationally down-

regulated in response to DR.  Therefore the expectation was for there to be no difference DR fed 

flies, and for there to be lifespan extension, activity increase, and starvation resistance in AL fed 

flies.  In the starvation screen using the outcrossed Mhc-Gal4 driver, only a slight increase in 

starvation resistance occurred in AL-fed flies, and an unexpected increase occurred in DR fed 

flies.  Interpretation of the activity data is again mootable depending on which control is used.  

Relative to the Mhc-Gal4 x W1118 control, both DR and AL fed flies decreased in activity.  But 

relative to the W1118 x Nc control, AL flies did exhibit the expected increase in activity.   
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Gene Biological Process Condition  mRNA 
Translation  

Median 
Survival Starvation: 

Mutant DR/AL 
Relative to 

Control DR/AL 

Activity 

Lifespan 
Extension: 
Relative to  

Mhc x W1118 
Control,  
W1118 x 
Mutant 
Control  

Nmo  Wnt receptor signaling      
Growth at NMJ 

DR  
Decrease  

89 
1 

Decrease or no 
effect*  21%, 13%  

AL  66 Decrease  39%, 29%  

Fbl  
Triglyceride 
homeostasis   
Locomotion 

DR  
Increase  

93 
1.04494382  

Decrease or no 
effect*  6%, 26%  

AL  66 Decrease or 
Increase*  13%, 39%  

Nc   Programmed cell death    
Biological regulation 

DR  

Decrease  

115 

1.292134831 

Decrease or no 
effect*  9%, 2%  

AL  66 Decrease or no 
effect*  4%, 10%  

Table 5. Summary of Results from Candidate Genes 

*Interpretation is based on the control 
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At this time, the only apparent explanation for these inconsistencies is that correlation 

does not prove causation.  It is true that in some genotypes, Dietary Restriction appears to play a 

causal role in the three distinct outputs measured in this thesis: starvation resistance, increased 

spontaneous activity, and lifespan extension (Katewa, et al. 2012). However, the TOR pathway is 

highly pleiotropic in its effects on metabolism.  We are only just beginning to understand the 

complexities of these effects.  By manipulating single genes downstream of TOR, one can only 

deduce that compensatory changes in physiology related to energy allocation, storage, and 

utilization are impacted, but will vary depending on the gene.   

Future experiments to further understand these relationships in candidates should include 

measurement of both triglyceride levels and glucose tolerance.  It has been shown that flies under 

DR that exhibit higher activity levels also show higher steady-state triglyceride levels (Katewa, 

et al. 2012). In flies, insulin signaling has also been found to effect locomotor function and 

lifespan (Jones, et al. 2009).  

Overexpression of d4E-BP in the muscle tissue shows differing results from previous studies 

carried out in the host laboratory.   

In a previous study, muscle-specific overexpression of d4E-BP was shown to increase 

lifespan and prevent the age-related decline in muscle function (Demontis, Perrimon, 2010). 

However, attempts to repeat this failed to demonstrate an increase in lifespan.  One possible 

explanation for this is that organisms of the same strain, but from different laboratories, 

sometimes differ in lifespan (Partridge, Gems, 2007).  This could be due to genetic divergence 

within strains, or due to use of different isoforms of the same gene.  There is a wild type d4E-BP, 

as well as two activated alleles of d4E-BP, classified as “weak” and “strong”.  It has been found 
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that overexpression of these different forms produces variable effects on the lifespan (Zid, et al. 

2009).  In order to reproduce the lifespan effects observed by other laboratories, the same strain 

of flies needs to be acquired directly from that laboratory.  Another explanation may be due to 

variance in the laboratory environment.  For instance, small differences in light, heat, and 

humidity can all account for effects observed in lifespan.  Although these variables are usually 

standardized, it is difficult to control them absolutely.   

 

Conclusion 

Aging is a complex process which is inevitable and ostensibly irreversible. One distinct 

intervention, Dietary Restriction, has been shown to slow aging in D. melanogaster and improve 

biomarkers associated with healthy aging.    In this thesis, the relationship between Dietary 

Restriction and activity, a known biomarker of healthy aging, was investigated.  To explore this 

relationship, nutritional manipulations and laboratory selection for lifespan were simultaneously 

applied.  The hypothesis was that metabolic changes in muscle tissue would play a causal role in 

mediating the lifespan extension effects of DR. To address this inquiry, components of the 

nutrient sensing TOR pathway were systematically examined for their effect on lifespan and 

activity by conducting RNAi in muscle tissue.  It was found that muscle-specific overexpression 

of eukaryotic translation initiation factor 4E binding protein (4E-BP), a direct target of TOR, 

enhanced both starvation resistance and activity levels in a nutrient dependent manner. 

Additionally, three downstream targets of 4E-BP were identified that may play a role in 

mediating the lifespan extension effects of DR through eliciting an increase in activity.  Two of 

the three, Nemo and Fumble, are very promising candidates for future lifespan studies due to 

their significant lifespan extension effects.  Yet a caveat of this research is the presence of 
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uncontrolled genetic differences between strains under study.  It is difficult to decipher the 

results of assays when using controls that are not genetically identical to the mutant strain.  In 

order to truly understand the influence that a specific mutant gene has on lifespan, results need to 

be clearly interpretable, robust and repeatable.  To maximize the potential for this type of result, 

future studies on the candidate genes will utilize backcrossed strains and make use of inducible 

drivers so that differences in genetic backgrounds are eliminated.  These candidate genes hold 

promise for future studies in healthy aging.  Once sources of variation in results are controlled, it 

will then be possible to start making conjectures about their relevance to human health.  

 

Methods 

Fly husbandry and lifespan analysis 

Fly husbandry was carried out per Kapahi Laboratory protocols (Zid, et al. 2009).  In the 

first screen, males from the RNAi lines were crossed to virgin females carrying the ubiquitous 

Da-Gal4 driver and muscle specific Mhc-Gal4 driver (from VDRC).  For repeat lifespans, males 

from the RNAi lines were crossed to virgin females carrying the ubiquitously expressing RU486 

inducible Act4C-GS-Gal4 driver or the Da-GS-Gal4 driver.  In the second screen, males from the 

RNAi lines were crossed to virgin females carrying the muscle specific Mhc-Gal4 driver (from 

VDRC).  

Genotype of the fly strains used for candidate genes in the second screen: 

(+/+; Mhc-Gal4/+; UAS-4E-BP), (+/+; Mhc-Gal4/+; CG5725 (fbl)), (+/+; Mhc-Gal4/+; CG8091 

(nc)), (+/+; Mhc-Gal4/+; CG7892 (nmo)) 
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Flies were developed on standard lab food, containing 1.5% live yeast.  On day 14 after 

crossing, progeny were sorted on light CO2 and females were transferred to the yeast extract 

(YE) diet.  The AL diet contained 5% yeast extract and the DR diet contained 0.5% yeast extract.   

Lifespan Assay 

The assay commences on Day 6 after sorting.  Flies are placed on DR/AL media.  Deaths 

are recorded every other day for the duration of life and plotted as a graph of Percent Survival 

over Time.  Kaplan Meier Survival Analysis was used to assess the effect of genes on lifespan. 

Starvation Assay 

The assay commences on Day 10 after sorting.  Females were placed on starvation media, 

composed of 1% agar.  Deaths were recorded every 2-4 hours for the duration of life and plotted 

as a graph of Percent Survival over Time.   

Spontaneous activity measurements 

The Drosophila Activity Monitor (Tri kinetics Inc.) is used to measure total movement 

activity over a period of 24 hours.  Movement of flies is measured in the vertical direction and a 

three equidistant points over the length of the vial (approximately 2 cm, 5 cm, and 8 cm about 

food surface).  The flies were transferred to fresh food in the morning by 12:00 pm and then 

moved to the monitors.  Measurements for a 24 hour period began at 4:00 pm. Time points are 

taken throughout the course of the lifespan and plotted as Total Fly Activity/Day.   

Outcrossing 
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To outcross the Mhc-Gal4 driver line, males from Mhc-Gal4 stocks were mated to 

W1118 females.  From the progeny, heterozygous mutant males were then backcrossed to 

females with the W1118 genetic background 5 times.    

 

Wing Clipping 

For wing clipping, females were sorted on Day 10 after eclosion.  Following brief 

anesthetization with CO2, the wings were clipped to approximately 1/3 of their original length.  

Activity measurements began that same day. 
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