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The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate
the ab initio ground state energies for multiple geometries of the H,O, N, and F, molecules. The
method is based on Feynman’s path integral formulation of quantum mechanics and has two stages.
The first stage is called the learning stage and reduces the well-known QMC minus sign problem
by optimizing the linear combinations of Slater determinants which are used in the second stage, a
conventional QMC simulation. The method is tested using different vector spaces and compared to the
results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate
that the SiLK method is accurate and reduces or eliminates the minus sign problem. © 2016 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4939145]

. INTRODUCTION

The development of accurate and computationally
tractable ab initio methods for studying correlated electronic
systems ranging from single molecules to bulk materials' is
an area of wide interest. Feynman’s path integral formulation
of quantum mechanics” has long attracted attention due to
its ability to include exact correlation and finite temperature
effects, as well as providing a method that can simultaneously
treat electronic and geometric degrees of freedom. The
path integral formulation is one of a number of methods
commonly referred to as Quantum Monte Carlo (QMC)-based
algorithms.?

In general, the use of QMC-based algorithms are hindered
by the so-called minus sign problem in which the fluctuating
sign of the fermionic density matrix leads to statistical
errors that scale exponentially with inverse temperature
and system size. The minus sign problem*’ remains a
great challenge in condensed matter physics and quantum
chemistry.

In quantum chemistry, there are a number of methods
used to include electron correlation. Commonly used methods
include density functional theory (DFT),® configuration
interaction (CI),” many body perturbation theory (MBPT),%~!0
and coupled cluster (CC)."""'® The CC method has been
regarded as the “gold” standard.'' These approaches, while
very useful, have well-known deficiencies such as the
approximate inclusion of correlation (DFT), size inconsistency
(truncated CI, such as with single and double excitations or
with single, double, and triple excitations), or non-variational
energies (CC). Therefore, it is important to investigate
alternative approaches.

0021-9606/2016/144(1)/014101/8/$30.00
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There are three major numerical methods used to
study strongly correlated many body systems. These are
exact diagonalization, density matrix renormalization group
(DMRG)," and QMC. Exact diagonalization is only feasible
for small systems since it scales exponentially with the
system size. DMRG has become useful for certain classes
of molecules with an order of 50 strongly correlated
electrons.*-22

The Monte Carlo method was first introduced and
developed by Fermi, Teller, and Metropolis.?*~2> QMC, unlike
exact diagonalization and DMRG, is a scalable method that
can be applied to multi-dimensional lattice systems. However,
QMC does have the minus sign problem in fermionic and
frustrated quantum systems.

A variety of methods have been proposed to alleviate the
minus sign problem in QMC. These include auxiliary field
Monte Carlo,?¢ shifted contour auxiliary field Monte Carlo,?
and fixed node diffusion Monte Carlo.>*® More recently, a
resummation path integral approach,?*° which is similar to
the SiLK method, phaseless auxiliary-field QMC,?! a finite
temperature version of diffusion Monte Carlo,>>3* and full
configuration interaction QMC>*% have been developed.

The Sign-Learning Kink (SiLK) QMC algorithm
originally developed by Hall***’ can be used to overcome
the minus sign problem. SiLK has previously been used to
study the 3 x 3 Hubbard model and atoms using a small basis
set.’%37 An approximate version of the method has been used
to study small molecules.* This method uses a novel learning
process to overcome the minus sign problem.

The goal of this work is to investigate the ability of
the SiLK method to reduce the sign problem and accurately
calculate potential energy surfaces in model systems with

©2016 AIP Publishing LLC
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relatively small basis sets. Investigation of the scalability of
the method is left for future work. Therefore, SILK QMC
calculations are performed on H,O, N», and F, at a number
of different geometries. The results of the calculations are
compared to the results to exact diagonalization and a variety
of quantum chemistry methods and demonstrate that the SiLK
method is accurate and that it reduces the minus sign problem
for all geometries.

Il. SILK FORMALISM AND ALGORITHM
A. SiLK formalism

Assume there are a finite set of states composed of Slater
determinants {a;} formed from orthogonal, one electron spin
orbitals. With Hamiltonian, H, and 8 = 1/kgT, the canonical
partition function Q can be written as

0= Tr{e’ﬁH} = Z (aj|e’BH|a/j). €))
J

Using
e PH = (e PHIPYE, 2)

and the identity

the partition function becomes

0= Z <C¥j1

J15J2 - P

X <aj2 exp (—gH)

X <a/jp exp (—gH)

P is introduced as a discretization variable that allows
for the evaluation of the matrix elements by expanding the
exponential, vide infra. For a given set of {a;,}, some of
the matrix elements in Eq. (4) may be diagonal. Thus, terms
appearing in the summand may be classified by the number
of off-diagonal matrix elements. In the SiLK formalism,
off-diagonal matrix elements are referred to as kinks. By
analytically summing over the diagonal matrix elements in
Eq. (4), we obtain a kink-based version of the partition

function. Defining
1
)0

X;= <aj exp (—gH) aj> ~ <a/j
X exp (—§<(¥j|H|a]‘>) +0 (i), 4)

P2
1
aj> +0 (ﬁ)

tij = <Q’i exp (—gH) ozj> X <a,~

~ exp (—g(ailHlaj)) -1+0 (%) , when i # j, (6)

1= JajXayl, 3)
Ji
exp (—EH)

P a12>
aj3> ...

a'j1>. 4)

1-fu
P

1-2u
p

the result of this analytical summation is3°

0= lim Q(P). )
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P n n
o(P)= Z xf + Z S l—[ Z (l—[ tjk’jkﬂ)
J n=2 k=1

i=l j;
xS ({x;}.n.m.{s;}). ®)

where n is the number of kinks, m is the number of distinct
«;’s in a given set of states with n kinks, s; is the number of
times the state «; appears in a given set of states with n kinks,
and

S ({x;}.nm {S'})‘ﬁ ;ﬂxsrl
JI L9 i (Sj_l)!dx;j—l J
m P-n+m-1
i
X y = )
IZ:; 3 (1 = x;)

where S may be evaluated recursively. Due to the derivatives
in Eq. (9), it is possible for S to be negative. In addition, the
off-diagonal matrix elements 7;,_j, ,, can also be negative.
Fig. 1 depicts the types of kink configurations that
appear in this sum over states. The top figure without kinks
corresponds to the case where only diagonal matrix elements
occur such that j; = j,.... The second case contains two

00000 _

0 kinks

—@ .M
@

3 kinks

4 kinks

FIG. 1. Examples of different kink configurations that occur in Eq. (4)
when P=5. Horizontal lines correspond to diagonal matrix elements and
slanted lines correspond to off-diagonal matrix elements that are referred to
as kinks. The lines at the beginning and end of a kink configuration wrap
around due to the Trace operation required by the partition function. The zero
kink configuration contains matrix elements for a single state, the two kink
configuration contains matrix elements for just two states, etc. Note that the
number of kinks and the number of states are not necessarily equal to each
other as it is seen in the four kink configuration.
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“kinks” where two identical off-diagonal matrix elements
are introduced. This so-called kink expansion was used in
condensed matter physics by Anderson® and later in the
chemical physics literature by Wolynes.*

The first term is non-negative. The n = 2 is also non-
negative since the off-diagonal matrix elements appear as
lt;,.;,I* and with s; and s, =1, S > 0. Therefore the sign
problem is due to terms with n > 3. The SiLK method
uses a learning algorithm to construct new states as linear
combinations of the initial {a;} states that minimize the
magnitude of the contributions from terms with n > 3 and
thereby reduces or eliminates the sign problem.

Eq. (8) has the form of a grand canonical partition function
and thus Monte Carlo methods may be used to evaluate the
partition function and its properties. Writing this equation as

,
0Py =" p(n{ai}), (10)

n=0 {a;}

a Monte Carlo simulation will involve sampling different
states and inserting and removing kinks. The average energy
of the system can be evaluated using (E) = —% InQ,

Zf:OZ{ai}%p(n’{ai})
S o iappn{ai})
P lp(n{a;i}l d

Y=o Liai} i ) ag P {@i})

P lp(n {a;})l

Zn:OZ{a[}%p(H’{ai})
1 d

<W@p>\p|

_ _\eldBT ) 1
ign(p),, (b

(E) =~

where kink configurations are sampled from |p|.

B. SiLK algorithm

Simulations are performed in two stages. The first stage
is a “learning” period and is used to construct an improved
description of the states of the system. We choose the lowest
energy Hartree-Fock state as the initial state. As the grand
canonical simulation proceeds, additional states are inserted
and removed and a list is maintained of states that have
appeared. At fixed intervals (30 iterations in our calculations)
or when the number of kinks present at the end of a Monte
Carlo pass exceeds a specified number (9 in our case), the
Hamiltonian is diagonalized in the sub-space of the states that
have appeared since the last diagonalization (or the start of
the simulation). The state is then set to the lowest energy state
(a zero-kink configuration) and the simulation is continued.
The learning period ends when there are only zero and two
kinks configurations present for an extended number of Monte
Carlo passes. At this point, the expectation is that the partition
function will be dominated by kink configurations with a
small number of kinks (dominated by configurations with 0 or
2 kinks) as the current set of states will better approximate the
ground state of the system than the initial ones. As currently
implemented, the learning stage can be thought of as using
the simulation to construct CI states. In the present work, the
learning period ranged from 8000 to 119 000 passes.

J. Chem. Phys. 144, 014101 (2016)

The second stage in the simulation is the data acquisition
during which the states are not modified and the grand
canonical simulation proceeds in the standard way. If the
number of kinks increases dramatically during this stage
(perhaps due to the simulation exploring a previously
unexplored region of phase space), a diagonalization is
performed and the second stage is restarted. In the calculations,
where additional diagonalizations were performed, the
diagonalization made an insignificant change in the ground
and excited state energies. Between 1000 and 2000 Monte
Carlo passes were used in the second stage.

The Monte Carlo algorithm consists of two types of
moves: change of state and insertion/removal of states. The
former is performed in the standard way using the Metropolis
algorithm. The latter uses the Metropolis algorithm as follows.
A potential new kink configuration ¢’ is sampled based
on the current kink configuration ¢ using the normalized
conditional probability T(c’|c) and accepted with probability

A(c’|c) = min [1, %] .If there are n states in the current

kink configuration, there are n + 1 places to insert a new state
into the kink configuration (as state 1, state 2, ..., state n + 1).
There are n ways to remove a state. We set

T(Cllc) = Tremuve(cllc) + Tadd(c,lc)’ (12)

with the probability of removing the state at location k in the
list of states

Tremove(c, = {I’l - 1,k}|C)
3 lp(1,2,...,k=1,k+1,...,n=1)|

, 13
Do) )
and with the probability of adding «; at location &,
Tadd(cl = {n + l,k,a]}|C)
L2,...,k=1a5,kk+1,...,n+1
_ It o LSV

D(c¢’|c)

with D(c’|c) the normalization for the probability,

D(c'|c) = Z|p(1,2,...,k— Lk+1,...,n-1)|
k

+ ;Zmu,z,...,k— Lajkk+1,...n+1).
aj

(15)

The acceptance probability is then

(16)

A(¢'|c) = min [1 DMC)] .

" D(c|c”)

lll. RESULTS AND DISCUSSION

We use the SiLK algorithm to calculate the energies
of H,O, N,, and F, at selected bond lengths and bond
angles for H,O. The Cartesian Gaussian DZ basis set*'=*
is used in all calculations. Computer memory constraints
imposed by the current SiLK implementation dictates the
number of determinants that can be used in the calculations.
The reason is that at present the CI coefficients for the
ground and excited states must be stored. Future work will
focus on alleviating the memory issues. We therefore use
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either the full vector space of determinants generated by all
possible excitations of the Hartree-Fock determinant (Full
Configuration Interaction, FCI) or the restricted vector spaces
generated by the HF determinant and either all possible single
and double excitations (SD) or all possible single, double
and triple excitations (SDT) of the HF determinant. In all
cases, a comparison of the SiLK method to the exact result
within the vector space is made to assess, as mentioned
in the Introduction, the ability of SiLK to provide accurate
results and alleviate the sign problem. At each geometry,
a Hartree-Fock computation using the NWChem ab initio
package® is used to generate the initial molecular orbitals
from which the determinants are created. Determinants
corresponding to excited states are generated by excitations of
all molecular orbitals except the core orbitals (the frozen core
approximation). Symmetry is used to restrict the determinants
to those with the same symmetry as the ground Hartree-Fock
state. For the calculations presented here, we use C,, spatial
symmetry for HyO and Dy, spatial symmetry for N, and
F,, respectively. We use 7=1 K (8 =3 x 10° hartree™).
Exact energies are obtained by numerical diagonalization for
the SD and SDT vector spaces. A series of calculations
with increasing values for P were performed until a
convergence in the energy was obtained. The values of P
chosen for the reporting of data ranged from 2 x 107 to
2 x 10'°. The FCI calculations for H,O is performed using
Molpro.*647

The ability of SiLK to address the sign problem
is evaluated by following the evolution of the sign (for
clarity averaged over every 20 Monte Carlo steps) during
the course of the learning period. Representative of the
results from the different molecules is the average sign
for water at the minimum energy FCI geometry.*® In this
calculation, the maximum number of states included in a
diagonalization is limited to 50 (the entire vector space
had a dimension of 128829). The coarse-grained sign is
shown in Fig. 2. The sign fluctuates significantly for roughly

—_— N
=)

Number of States
(%)

Average Sign
S oo o
DB oy 0o —

o
\
i

202 L | | |
0 500 1000 1500 2000

Number of diagonalizations

FIG. 2. The evolution of the sign during the SiLK learning period for H,O
using the DZ basis set at the FCI minimum energy geometry, P =2x 10%. The
O-H bond length is 1.843 45 bohrs and the HOH angle is 110.565°. The upper
plot shows the number of states involved in each diagonalization, which was
constrained to be less than or equal to 50. The lower plot shows the average
sign evolution, averaged over every 20 diagonalizations, during the learning
process.

J. Chem. Phys. 144, 014101 (2016)

the first 1500 diagonalizations, but after approximately 1600
diagonalizations it remains 1.0. In the upper panel of Fig. 2 the
number of states involved in each diagonalization is shown.
After 1600 diagonalizations, the coarse-grained sign remains
at 1.0 even though the number of states involved in subsequent
diagonalizations is approximately 20. This indicates that kinks
are being introduced during the Monte Carlo process but these
are not affecting the sign. The number of kinks averaged over
the kink configurations between 2 successive diagonalizations
ranged from roughly 5 at the beginning of the learning period
toroughly 2.5 at the end of the learning period. An examination
of the kink configurations after the learning period found that
the configurations contain either zero and two kinks and
therefore the average sign is 1.0.

Accurate calculations of potential energy surfaces are
important in understanding reaction energetics and rates. The
ability of SiLK and other quantum chemical methods to
calculate potential energy surfaces is assessed for H,0, F,, and
Nj. The goal of a successful method is to achieve the accuracy
required to describe energetic differences encountered in
chemical processes such as bond-breaking/bond-forming
reactions and reaction activation energies. This so-called
“chemical accuracy” is approximately 0.1-1 kcal/mol ~1073
to 10~* Hartree.*’

Several versions of truncated CC are used in this work.
The CCSD method uses single and double excitations.!” The
CCSDT method uses single, double, and triple excitations.’”
The CCSD(T) method uses single, double, and non-iterative
inclusion of perturbative triples'® and is considered to be
the “gold standard” of ab initio quantum chemistry. The
MRCCSD(T)(2,2) and MRCCSD(T)(4,4) methods are multi-
reference CC (MRCC) methods with single, double, and non-
iterative inclusion of perturbative triples.>! A (2,2) calculation
uses 2 electrons and 2 orbitals (one occupied and one virtual)
to generate the model space for the MRCC calculation and a
(4,4) calculation uses 4 electrons and 4 orbitals (two occupied
and two virtual) to generate the model space for the MRCC
calculation. We also use second order MBPT (MBPT(2)). The
NWChem software package is used to perform all standard
ab initio calculations.

A. Water

The H,O molecule is used to assess the ability of SiLK
to describe the variation of energy with bond length and bond
angle in two separate calculations, one in which the bond
length is varied and another in which the bond angle is varied.
Fig. 3 displays the energy and its absolute error as a function
of bond length at fixed bond angle of 110.565° as calculated
by different methods. The SiLK method has an absolute
error of 107> hartree over the range of bond lengths studied,
which is well below the desired chemical accuracy. At the
minimum energy geometry (bond length = 1.8434 bohrs), the
exact energy is —76.144 552 99 hartree and the energy of the
lowest energy SiLK state is —76.144 546 90 hartree, an error
of ~6 x 107° hartree. Therefore, the SiLK procedure found
an excellent approximation to the exact ground state. SiLK
is approximately one order of magnitude more accurate than
the most accurate of the other methods in the comparison.
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FIG. 3. Potential energy curve of HoO molecule as a function of OH bond
length. A comparison of results obtained using MBPT(2), CCSD, CCSD(T),
CCSDT, MRCCSD(T)(2,2), MRCCSD(T)(4,4), and SiLK formalisms. The
bottom plot displays the absolute error in the calculated energy for the
different methods. P =2x 108 is used for bond lengths in the range [1.34
-3.64] bohrs and P =2x10° is used for bond lengths in the range [3.74
-4.34] bohrs.

Notably, SiLK is accurate at the longer bond lengths (roughly
two orders of magnitude more accurate than any other method)
which is crucial to a description of bond dissociation and
bond breaking processes. None of the other methods (except
MRCCSD(T)(4,4)) achieves chemical accuracy over the entire
range of bond lengths studied.

Then we use these methods to calculate the energy as
a function of bond angle for the H;O molecule with bond
length 1.84345 bohrs. Fig. 4 displays the energies and
absolute errors for bond angles ranging from 95° to 125°.
The SiLK method is approximately two orders of magnitude
more accurate than the most accurate of the other methods.
All methods except MBPT(2) and CCSD achieve chemical
accuracy.

It is also instructive to consider calculations restricted to
just single and double excitations as sometimes computations
based on such restricted vector spaces can yield useful results

-76.11 — MBPTQ)

r — CCSD R
— CCSD(T)
— CCSDT 7
— MRCCSD(T)(2,2)

MRCCSD(T)(4,4)
G-o SiLK -

-76.13

-76.12—

E [Hartree]

AE [Hartree]
—_ 5‘ —_—
-

LB IR SRR B
ol vl ol owd 0

_
o\

! ! |

100 110 120
Angle [Degree]

FIG. 4. Potential energy curves of H,O FCI vector space for the DZ basis.*?
A comparison of results obtained by SiLK with results from MBPT(2),
CCSD, CCSD(T), CCSDT, MRCCSD(T)(2,2), and MRCCSD(T)(4,4). Bot-
tom plot displays the absolute error of energy. P =2x 108 is used for all
angles in SiLK QMC.
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510
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FIG. 5. Potential energy curves for H,O molecule using the DZ basis and the
SD and SDT vector spaces. The exact results obtained from exact diagonal-
ization and the SiLK results are shown. P =2x 10'? is used for all the bond
lengths in the SD and the SDT vector spaces.

using significantly fewer computational resources. Therefore,
the SiLK algorithm is used to calculate the energies and
absolute errors of the H,O molecule as a function of bond
length and bond angle. Figs. 5 and 6 show their comparison
with exact results. The SiLK method is able to reproduce
the exact results to 107 hartree, well within chemical
accuracy.

B. Nitrogen

N, has a triple bond, which provides a challenging test
for ab initio methods due to its large electronic correlation.>?
Due to memory limitations, the SiLK calculations were
restricted to the Hartree-Fock determinant plus either the
SD and SDT vector spaces. Fig. 7 shows that the SILK QMC
results converge to the exact result over a wide range of
bond lengths. At the minimum energy geometry (bond length
= 2.168 bohrs), the exact energy is —109.085 809 5 hartree and
the energy of the lowest energy SiLK state is —109.085 809 4
hartree, an error of ~1 x 1077 hartree. Therefore, the SiLK

-76.14 -« Exact_SD 4
— SiLK_SD
iy -« Exact_SDT
= SiLK_SDT
3
=)
m

|2 - | - |

100 110 120
Angle [Degree]

FIG. 6. Potential energy curves for the HoO molecule within the SD and
SDT vector spaces and the DZ basis. Exact results obtained from exact
diagonalization and SiLK results are shown. P =2x 10 is used for all the
angles in the SD vector space. Within the SDT space, P =2x 100 is used
for angles in the range [95.565, 120.565] and P =2x107 is used for the
125.565° calculation in SiLK QMC.
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FIG. 7. Potential energy curves for N, molecule as a function of bond length
using the SD and SDT vector spaces. The exact results obtained from exact
diagonalization and SiLK results are shown. P =2x 10'° is used for all bond
lengths.

procedure found an excellent approximation to the exact
ground state. The results demonstrate that the SiLK method
is suitable for multi-reference systems such as N, where more
than a single determinant is strongly coupled in the ground
electronic state.

C. Fluoride

Electron correlations are difficult to include in the
simulation of F, as many determinants contribute small
but important contributions to the total energy.”® This
phenomenon is often referred to as dynamic correlation.>
Therefore, the SiLK method is applied to the F, molecule.
As with Nitrogen, due to memory limitations, the SiLK
calculations is limited to the SD and SDT vector spaces.
Fig. 8 shows that the SILK QMC results converge to the exact
results and demonstrate that SiLK is capable of accurately
including dynamic correlation. At the minimum energy
geometry (bond length = 2.868 16 bohrs), the exact energy
is —198.949 4169 hartree and the energy of the lowest energy
SiLK state is —198.949 4169 hartree, an error of <1 x 1077
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FIG. 8. Potential energy curves for F» molecule as a function of bond length
and using the Hartree-Fock determinant plus either the SD and SDT vector
spaces. The exact results obtained from exact diagonalization and the SiLK
results are shown. P =2x 100 is used.
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FIG. 9. The length of the learning period as a function of the number of
Slater determinants. The results for the SD, SDT, and FCI vector spaces for
all molecules and geometries are shown.

hartree. Therefore, the SiLK procedure found an excellent
approximation to the exact ground state.

D. Scaling analysis

It is beyond the scope of this work to make a thorough
analysis of the scaling of the SiLK method as the memory
requirements of the current implementation of the SiLK
method prohibit the use of a wide range of basis set size.
However, it is important to assess the scaling of the SiLK
algorithm with the size of the basis set and vector space.
No truncation methods, such as a truncation in the space
of the single-particle density matrix,”> will improve the
efficiency of the algorithm for certain systems. Therefore,
a scaling analysis is presented for the current work using
the relatively limited size of the vector spaces. If the
SiLK algorithm increases too quickly with the size of the
vector space, the computational requirements for the SiLK
method will make its use in the present form intractable. The
dependence of the length of the learning period on the size
of the vector space (number of determinants) is presented
in Fig. 9. As expected, there is an increase in the size of
the learning period. However, a wider range of vector space
sizes is necessary to fully understand and quantify the scaling
behavior.

IV. CONCLUSIONS

The minus sign problem in Quantum Monte Carlo
simulations of frustrated or correlated electronic systems is
a challenging problem. It has even been suggested that a
general solution of this problem is NP-complete.* Therefore,
one should not expect an effective solution for all the Monte
Carlo simulations which have the minus sign problem. In
this paper, we demonstrate that SILK QMC can reduce the
minus sign problem by using a learning stage that includes a
diagonalization procedure. In this paper, we demonstrate that
the energies obtained by the SiILK QMC match the results from
exact diagonalization and surpass the accuracy obtained using
other quantum chemistry methods, particularly for geometries
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relatively far from equilibrium. In addition, SiLK can be
applied to systems that require a multiple reference state
approach. An intriguing possibility for future work is to use
the SiLK learning procedure in combination with other QMC
algorithms to reduce the minus sign problem.

As the learning stage progresses, the states become more
complicated linear combinations of determinants so that more
evaluations of matrix elements are required, thereby increasing
the computational expense. However, at the same time, the
number of non-zero matrix elements between these states
decreases. So, further optimization is possible by storing often-
needed matrix elements in memory. For example, storing the
off-diagonal matrix elements between the ground and excited
states yields a large speed up, since these are the only matrix
elements required once the learning stage reaches the point
where mostly zero and two kink configurations appear in the
simulation. It is also possible to halt the learning stage at an
earlier point, when the ground SiLK state is not as accurate
an approximation to the exact ground state, but when the
sign problem is alleviated but not eliminated and relies on
the Monte Carlo sampling to provide the exact energy. This
would reduce the computational effort required to evaluate
the matrix elements since fewer diagonalizations will have
occurred. An investigation of the efficacy of a shorter learning
period is left for future work.

The SiLK method requires the knowledge of the off-
diagonal matrix elements of the Hamiltonian. As the size
of the system increases, the number of off-diagonal matrix
elements increases factorially and it is not possible to store
the matrix elements or the CI coefficients for the ground and
excited states that would allow for on-the-fly evaluation of the
matrix elements. As such, without a procedure to accurately
truncate the number of determinants used to describe the
ground and excited state wavefunctions, the use of the all
possible determinants in a SiLK calculation will be limited
to relatively small systems. However, SiLK can certainly be
used when determinants are restricted to, for example, single
and double excitations. Such truncated sets of determinants
are often sufficient for the study of chemical systems. In cases
where restrictions to single and double excitations are not
sufficient, more sophisticated methods of truncation, such as
the one developed by Maurits,> will be needed.

The SiLK QMC is a versatile method to calculate the
ground state energy of molecular systems. Since the path
integral formulation uses the canonical partition function it is
possible to use the SiLK method to simulate the motion of the
atoms at a finite temperature. Future work will investigate the
use of the SiLK method in finite temperature simulations.
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