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Abstract
We have only a vague idea of precisely how protein sequences evolve in the context of protein structure and function. This is primarily

because structural and functional contexts are not easily predictable from the primary sequence, and evaluating patterns of evolution at

individual residue positions is also difficult. As a result of increasing biodiversity in genomics studies, progress is being made in detecting

context-dependent variation in substitution processes, but it remains unclear exactly what context-dependent patterns we should be

looking for. To address this, we have been simulating protein evolution in the context of structure and function using lattice models of

proteins and ligands (or substrates). These simulations include thermodynamic features of protein stability and population dynamics. We

refer to this approach as ‘ab initio evolution’ to emphasise the fact that the equilibrium details of fitness distributions arise from the physical

principles of the system and not from any preconceived notions or arbitrary mathematical distributions. Here, we present results on the

retention of functionality in homologous recombinants following population divergence. A central result is that protein structure charac-

teristics can strongly influence recombinant functionality. Exceptional structures with many sequence options evolve quickly and tend to

retain functionality — even in highly diverged recombinants. By contrast, the more common structures with fewer sequence options evolve

more slowly, but the fitness of recombinants drops off rapidly as homologous proteins diverge. These results have implications for

understanding viral evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process can also guide

improved methods for accurately approximating folding probabilities in more complex but realistic systems.

Keywords: lattice models, divergence, recombination, evolution

Introduction

Despite over 30 years of serious effort, the mysteries of protein

structure and function are sufficiently complex that it is not

possible accurately to predict novel structures from their

sequence information and first principles.1–4 In evolutionary

genomics, therefore, people have tended to use extremely

simple models of protein evolution for theoretical purposes.5

These models often have little relation to proteins as thermo-

dynamic molecules and have been further constrained

by the limits of computational resources and algorithm

development;6–8 reconstruction of evolutionary processes is

itself an extremely difficult and not yet entirely solved problem.

Until recently, evolutionary models used in comparative

genomics almost uniformly assumed that substitution

probabilities were unchanging and the same at all sites,

except for variation in the average rate. A few groups have

recently begun to incorporate a broader view of the context

dependence of evolutionary rates and, in particular, to

incorporate interaction among protein residue positions, or

molecular co-evolution, into the evolutionary model.9–11

A critical component of modern approaches is to observe

variance in substitution probabilities and co-evolutionary

interactions without presupposing their cause and then relate

these observations to structural and functional features.

It is fairly clear (to us, at least) that current concepts of

how proteins evolve are not sufficiently robust to build

good reality-based evolutionary models and are likely to be

misleading in many aspects — for example, when trying to

differentiate selection and adaptation from neutral or random

processes. Due to the large numbers of sequences and genomes

from diverse organisms which are rapidly accumulating in

worldwide databases, however, the potential for evolutionary

analysis to inform genomics studies on molecular structure,
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function and interaction is enormous. We are beginning to

obtain more detailed and densely sampled taxonomic datasets

that are allowing much more sophisticated deconstruction

of site-specific and variable rates and are developing

methodology to take these datasets into account.12–19 In spite

of this progress, the lack of reasonable expectations for

precisely how structural and functional contexts affect evolu-

tionary processes hinders the development of realistic models.

As a consequence of this situation, we have embarked on a

long-term series of studies to utilise thermodynamic models

of proteins and protein function, in conjunction with popu-

lation simulations, to improve our understanding of protein

evolutionary dynamics and make better predictions of the

effects to test for in real proteins. What happens in evolution

that allows variation to exist with no apparent effect in

some species, but causes disease in others? How do we expect

ligand binding, catalysis and protein–protein interaction to

affect evolution — and how far across a protein should the

effects of these interactions spread? Do different types of

proteins behave differently (and what defines a ‘type’)? How

does the strength of selection (or the importance of a function)

affect evolution, and how does population size modulate this

effect? It is our experience that intuition is not necessarily a

good guide, and that proteins evolved in semi-natural popu-

lations can have very different properties to random proteins or

proteins evolved in an ad hoc fashion.20,21

We use the term ‘ab initio evolution’ to describe our

approach, to emphasise the fact that the distributions of

selective effects in these models arise naturally from the system,

rather than as a consequence of artificially constructed

distributions of selective effects or from artificial and overly

simplistic adaptive landscapes. This approach owes a great deal

to a long history of work on energy-based landscapes, both for

RNA and for proteins. In our work, we particularly focus on

protein-like structures (ie the energy landscape is not solely

limited to pairwise interactions, as in nucleic acid structure),

‘proteins’ evolved to equilibrium in reasonably large popu-

lations and also on reasonably complex interaction energies (ie

we use empirically based interaction potentials that are

different for every pair of amino acids, not simplified to a basic

two-state hydrophobic potential).

We also focus on patterns of evolution that can emerge

from the interaction between structure, function and selection

in a thermodynamic system, rather than focusing on a per-

fectly accurate representation of protein energy or on protein

structure prediction. For example, we introduced one of the

first, and up to this time one of the few, models that allowed a

diverse and manipulable protein function criterion that was

separate from the simple criterion that a protein need only fold

in order to function.22 We have also been interested in the

effect that the details of protein structure may have on the

evolutionary process. The size of the sequence space that will

fold to a particular structure, also known as the structural

designability,20,23–25 has a particularly important influence.

For example, a small number of structures are what is called

‘highly designable’, but, because (by definition) many more

sequences are compatible with these structures than with other

structures, they are more often compatible with random

mutations and thus evolve more quickly.

We present here an analysis of the process of divergence

with regard to structural designability and thermodynamic

competition with adjacent structures. We consider how

the context changes as divergence proceeds, as measured by

the fitness of recombinants that result from homologous

recombination between divergent proteins. We use the

common genetic definition of ‘homologous’; Cui et al.26

previously studied the functionality of recombinants under a

hydrophobic and polar (HP) model, but used a novel defi-

nition of ‘homologous’ that did not involve divergence and did

not involve a naturally evolved and selected population. Aside

from the ‘Materials and methods’ section, we avoid extensive

discussion of the biophysical details in order to present the

evolutionary motivations of the research clearly to a broad

genomics audience. These details are available in numerous

previous publications by ourselves and others.27–29 Since a

central focus of our work is to infer biologically realistic

models that may be useful for predictive application in evol-

utionary genomics, we provide detailed consideration of var-

ious choices with regard to aspects of the models that might be

simplified or made more complex, and suggest new

approaches for future modelling.

Materials and methods

Modelling protein evolution on a lattice
The main biophysical considerations in modelling proteins on

a lattice have been given in detail previously.22,30,31 In brief,

however, for each sequence we consider its energetic

compatibility with the entire ensemble of maximally compact

two-dimensional arrangements that are possible on a regular

lattice. We analyse sequences of length 25 or 36, which thus

have maximally compact arrangements that are perfect squares,

with side lengths of five or six. The two-dimensional

approximation allows us to consider all possible structures in

reasonable computational time and also has a more realistic

ratio of internal to surface residue positions. Compatibility of

a sequence with a two-dimensional arrangement, called a

‘structure’ or ‘fold’, is calculated by considering the residues

that are adjacent to one another on the lattice, but not

connected along the sequence. Thus, the energy, E
f
k; of a

protein sequence k in fold f is calculated as the sum of all such

interactions in the fold. The energy of each specific amino

acid interaction is given by the empirical Miyazawa–Jernigan

potential, which is based on the frequencies of observed

contacts in known crystal structures.32 We do not directly

address folding kinetics in this study, but include a folding

approximation in our fitness equation (below). Assuming
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thermodynamic equilibrium among the structures, and using

standard Boltzmann statistics, the probability that sequence k

will be in fold f is given by:

P
f
k ¼

expð2E
f
k=RT Þ

Z
; ð1Þ

where RT is the universal gas constant multiplied by tem-

perature (here, room temperature in degrees Kelvin). Z is the

canonical partition function, which is simply the sum of the

numerator in Equation 1 over all possible structures.

Sequence evolution in populations
We modelled evolution in constant-size haploid populations of

1,000 individuals with a mutation rate of 0.05 mutations per

protein per generation (ie for each generation, five mutants are

expected to arise in the population). Fitness was based pri-

marily on the probability of folding into a specific ‘native’

structure, fN, which is presumed to be required for protein

function and which was prespecified for any given simulation.

The ability of a sequence to achieve a fold kinetically is also an

important consideration that is often modelled,23 but we

considered kinetic folding to be more realistic as a minimum

requirement, and thus included foldability as a step function

such that proteins estimated to fold slower than a critical cut-

off had extremely low fitness. For any sequences remotely

close to evolutionary equilibrium, foldability was always far

above the minimum cut-off and the fitness of a sequence k,

was thus:

vk ¼ P
f N
k ð2Þ

Each generation consisted of mutation followed by selection of

sequences according to their fitness, followed by random

multinomial sampling to create the subsequent generation.

We also evaluated the potential for two structures (i and j) to

be ‘co-selected’ by using a modified fitness function:

v
ij
k ¼ Pi

kP
j
k=0:25; ð3Þ

with the division by one-quarter introduced because the sum

of both folding probabilities must be less than one, hence their

multiple is, at most, 0.25.

In preliminary simulations, the time for populations of

sequences to reach equilibrium (as measured by the autocor-

relation of the fitness between well-separated generations)

depended on the native structure chosen. We therefore ran

all simulations conservatively to 5,000 generations prior to

any analysis, a cut-off that suffices for all structures. To study

the divergence of sequences, equilibrium populations were

duplicated and allowed to evolve independently under

identical conditions. After duplication, the most frequent

sequences in each population were sampled every 500

generations. At each sampling point, the two sequences

were recombined at all possible sites and the probability of

folding into each structure was evaluated for each reciprocal

recombinant. To summarise this information over a sample

of size S, and all possible recombinants, we generalised Taverna

and Goldstein’s occupancy measure for a sequence of length

2533 as:

Q
f
R ¼

PS
s¼1

P48
l¼1 P

f
k

48S
; ð4Þ

in which case there are 48 different reciprocal recombinants.

For comparison, we also considered the occupancy of each

structure in the entire parent population over the entire course

of evolution. We present the difference between the natural

logarithms of these two measures as the ‘D(ln occupancy)’

measure for each structure. We also, of course, considered the

fitness of the recombinant sequences.

Structural comparison
We considered the results of our simulations in terms of two

structural features. First, we classified alternative structures

by their distance from the native structure. Since contact

energy between residue pairs solely determines compatibility

of a sequence with a particular structure, we measured the

distance between two structures by the number of contact

pairs that the structures had in common. A compact structure

for sequences of length 25 has 16 contact pairs, and for a

sequence of length 25 this distance measure varies between

0 and 14. The other structural feature we considered was

the ‘designability’ of a structure, which is defined as the

proportion of random sequences that ‘fold’ to that structure.23

Here, we considered that a sequence ‘folds’ to a particular

structure if the probability of folding (Equation 1) was greater

than 98 per cent. We use this definition because it closely

matches the average probability of folding at evolutionary

equilibrium in our fitness-based population simulations.

We divided sequence space into three levels, according to the

designability criterion, which we designate ‘low-’, ‘medium-’

and ‘high-designable’ structures. About 50 per cent of the

sequences in foldable sequence space fold to the 10 per cent

most designable structures. The medium-designable structures,

accounting for another 20 per cent of structures, account

for 40 per cent of the designable sequence space, and the

remaining 70 per cent — the low-designable structures —

account for only about 10 per cent of the designable

sequence space.

Approximating the probability of folding
with fewer structures
As a result of the analyses presented here, it is apparent that

not all structures play an equal role in determining the

evolutionary trajectory through sequence space. We therefore

considered whether we might carry out an efficient approxi-

mation of the probability of folding to the native structure,

based on our results and a carefully considered sampling of
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the structural ensemble. This may allow much more efficient

simulation of longer sequences in two or three dimensions.

For a structure space of F folds, the partition function can be

split into two parts:

Z ¼
XC

f¼1

expð2E
f
k=RT Þ þ

XF2C

f¼1

expð2E
f
k=RT Þ; ð5Þ

where the first part is summed over the C folds closest to the

native fold (based on shared contact pairs) and the second

part is summed over the remaining folds. We approximate the

partition function by calculating the energies of all C folds,

but taking a small random sample of the F 2C folds that

are more distant from the native structure. To reduce variance,

we also tried breaking the F 2C more distant folds into cat-

egories according to their distance from the native fold

and then randomly sampling to estimate the partial Z score

for each distance category separately.

Results

Considerations on model complexity
The simplicity of the model used in protein evolutionary

simulations can have a large influence on what questions

can be asked and answered with these systems. Relatively

more accurate models (for example, all-atom models that

incorporate van der Waals effects, electrostatic interactions,

amino acid rotamer information and other important physical

principles) will give more precise and realistic energies for a

single structure than simpler models, but the computational

time spent calculating each variant is much longer, meaning

that the evolutionary time span that can be simulated is

severely limited. Neither is there as much potential for

thorough consideration of a large sample of structural

alternatives, nor is it feasible to evolve a large population. This

means that, although the individual energies are more accu-

rate, the entropic contributions to energy are much

less accurate and the consequences of long-term evolution

are ignored. We sometimes utilise such models to link our

results more closely to real proteins (Xu, Y. and Pollock, D.,

unpublished data), but in this paper we present results from

simple lattice models because we are concerned here with

long-term processes of divergent evolution. The simplicity of

the function allows us to sample the energy function over

many types of structures, and to replicate results.

There are numerous alternatives and choices for simplifi-

cation, even in simpler lattice-based models.27,28 Some of

these may depend simply on choice, while others depend

heavily on what questions are being addressed. We usually use

a simple contact potential from Miyazawa and Jernigan (MJ),32

but we avoid further simplification to the HP model27 because

we are interested in the effect of the more numerous and

subtle interactions in the full MJ potential and there is

little computational cost compared with the HP model.

Furthermore, with the MJ potential, it is extremely rare to

find a sequence that folds equally well to two structures,

whereas this is common with the HP model.

Other choices with regard to simplification are the length

of sequence, the dimensionality, limiting the analysis to com-

pact structures and the consideration of the folding process.

The choices we have made in the current study have mostly

been made to allow more thorough long-term evolutionary

analysis. Three dimensions allow much more conformational

flexibility than two dimensions, meaning that there are

many more structures to consider. For the lengths of sequence

that can be managed, three-dimensional structures have

unrealistically few ‘core’ sites due to their small size. Likewise,

there are far more non-compact structures than compact

structures, but most of these structures are much less stable

than the compact structures (because they necessarily make

fewer contacts). Structure or fold space also increases

exponentially with sequence length, and so the choice

of sequence length is simply a matter of how much

computational power is available and how many variants must

be calculated in the study. Further specifics on some of

these trade-offs are given later in the results, where we

consider the potential for approximations that could restrict

the impact of some of these computational limitations. The

folding process itself is even more complex and we do not

generally consider it in great detail. It appears that, for the

most part, however, equilibrium sequences produced by

evolution based on a thermodynamic fitness function are also

predicted to fold well (data not shown).

A further benefit of simple models over more complex

models is that simple models allow clear sufficiency proofs.

In other words, if we can find evidence for a particular

behaviour in a simple model, this can provide a simple and

comprehensible explanation, whereas a more complex model

can be more difficult to parse and reduce to its meaningful

components. Also, we can test more variables in a simple

model to ascertain the most important model details, rather

than having only one or a few enigmatic examples, as is often

the case for more complex models.

Divergence, recombination and designability
As proteins diverge from one another, we can reasonably

expect that recombinants formed between these proteins may

eventually cease to function because of accumulated

co-evolutionary incompatibilities between the divergent

halves of the proteins. We can also expect that the specifics

of this process are difficult to predict. An important initial

question is whether this process varies between different

kinds of proteins (as measured by designability, the number

of sequences that can fold into a particular structure) and

whether competition with specific alternative misfolded

structures is responsible for poor folding in recombinants.

We measure this competition by considering the probability
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of folding to alternative misfolded structures (the occupancy of

the alternate folds) during normal evolution and after

recombination between divergent proteins.

Visually, the occupancy of misfolded structures had a

log-linear relationship in both the parental and recombinant

populations, with no clear differences between proteins with

different designability levels (data not shown). This means that

there is not a large difference in how target structures with

different designabilities mutate to deleterious sequences. There

is, however, a large difference between low-, medium- and

high-designable structures in terms of the extent to which the

recombinants are worse than their parents (Figure 1).

The difference in the misfolding of alternative structures in

recombinants is necessarily reflected in a similar difference in

the probability of folding to the native structure — that is, the

fitness of recombinants. This is seen in a rapid and continuing

decrease in the fitness of low-designable recombinants over the

course of evolution (Figure 2). High- and medium-designable

structures have a much slower rate of decrease. We observe

here that there is apparently considerable asymmetry in the

fitness of reciprocal recombinants. For high- and medium-

designable proteins, the more fit of the two reciprocal

recombinants is on average only slightly less fit than the

parental type, even after one million generations of evolution.

By contrast, even the better of the two reciprocal recombi-

nants is substantially less fit than the parents in low-designable

proteins, and the worse of the two is dramatically poorer

than any other recombinants. Although it is in some ways

surprising that the various levels of fitness of recombinants

are not worse than they are, the drops in fitness for the

recombinants are such that they would be removed from

the population by natural selection. According to standard

population genetics theory,34 for a population of 1,000, fitness

differences of 1/1,000 are considered selectable, and fitness

differences greater than 1/100 (Ns . 10, where N is the

population size and s is the selective effect) are considered

to be strong selective differences.

It should also be noted that our fitness function, by contrast

with many studies, does not increase linearly with increasing

energy, nor do we use an arbitrary flat fitness cut-off to

produce a neutral network artificially. Thus, the benefit of

increasing stability decreases as the protein approaches the

evolutionary/thermodynamic equilibrium. With every

mutation, the fraction of space that is approximately neutral

Figure 1. Differences between alternative structure log occu-

pancies in parental and recombinant proteins. The average

differences after one million generations for eight high-, 24

medium-, and 32 low-designable target (native) structures are

represented with squares, triangles and circles, respectively,

with results for each structure replicated four times. The

differences in the natural log occupancies decrease linearly with

the number of shared contact pairs, although there are many

fewer alternative structures with large rather than small num-

bers of shared contacts — and thus much more variable results.

The difference in log occupancies between low-designable and

medium- and high-designable structures is consistent, meaning

that the occupancy of alternative (non-native) folds in

low-designable recombinants is about one- to two-fold higher.

Figure 2. Average fitness of recombinants between proteins

from two diverging populations over the course of evolution.

Averages of the same number of high-, medium- and low-

designable structures are represented as in Figure 1, except

that the average of the better of the two reciprocal recombi-

nants is shown with a solid symbol, while the average of the

worse reciprocal recombinant is shown with a hollow symbol.

Populations of size 1,000 were equilibrated for 10,000 genera-

tions prior to duplication and divergence for a further one

million generations and sequences were recombined at

the midpoint.
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changes, as does the distribution of selective effects in probable

future mutants.

The differences shown are averages over all sites of

recombination. It is expected that recombination sites closer to

the centre of the protein might lead to greater effects, since at

such sites there is a greater amount of disruption in contact

pairs in the recombinants. Indeed, our own simulations agree

with previous results35 in demonstrating a strong correlation

between the recombination site with lowest fitness for any

pair of structures and the number of contact pairs that are

disrupted by recombination at that site (data not shown).

Not surprisingly, the site of lowest fitness tends on average to

be near the middle of the protein (Figure 3). The variation

in fitness reduction versus the site of recombination was much

more notable and dramatic in low-designable structures, and

there was also more variation among low-designable structures

in the location of the worst recombinant (Figure 3).

Competition between structures in
sequence space
The preceding results illustrate an interesting difference in

how structures diverge according to their designability. It

has previously been shown36,37—and our own simulations

agree — that compared with high-designable structures,

structures with low designability tend to have more ‘adjacent’

structures with many shared contact pairs. We see here that

the difference in designability must be solely due to the

number of adjacent structures, since there is no difference

between high- and low-designable structures in their tendency

to mutate to adjacent structures with the same number of

contact pairs.

By contrast, low-designable recombinants have a greater

tendency to fold into alternative structures at all distances.

Thus, the lower fitness of low-designable recombinants is a

combination of both the number of adjacent structures and

an increased propensity to fold to adjacent structures. To

determine how well this result is upheld on a structure by

structure basis, it is necessary to evaluate the sequence space

where pairs of structures are in direct conflict. In other words,

one should evaluate the sequence space that is most ambivalent

about which structure is preferred. This sequence space is so

small a proportion of the overall sequence space that it is not

feasible to identify it through random sampling (unless the

structure space is very simple38); instead, we therefore used co-

selection for two structures at the same time. This approach

allowed us to locate this space efficiently through the evol-

utionary process.

We do not have a direct measure of the size of the

overlapping space using this method, but the average fitness of

these co-selected populations can serve as a surrogate. We

found a surprisingly linear relationship between the average

equilibrium fitness of co-selected populations and the number

of contact pairs shared between the two co-selected structures

(Figure 4). We did not find any relationship between

equilibrium fitness and the designability of either structure in

the pair. It is also interesting that we did not find any

asymmetry in the tendency of equilibrium sequences to fold to

one structure in the pair or the other, regardless of whether

one structure was high designable and the other was low

designable (data not shown).

Increased computational efficiency for
energy calculations
In ab initio evolutionary studies, complete analysis of longer

and more complex proteins is precluded by the immense size

of conformation space as sequence lengths increase, when

non-compact structures are considered and when moving to

three dimensions. For example, there are 1,081 structures

possible for the square 5 £ 5 lattices used in most of this study,

but a 6 £ 6 lattice has 57,337 structures and there are

nearly 5.77 billion non-compact structures for sequences of

length 25.39 For a sequence of length 27, there are over

103,000 compact structures in a three-dimensional 3 £ 3 £ 3

lattice.39

To further consider the potential use of the previous results,

we ran simulations to test how many structures were necessary

to approximate the partition function and whether targeted

Figure 3. Average fitness of recombinants from diverged

populations as a function of crossover position. Recombinants

at all possible positions were tested from the equilibrated and

diverged populations from Figure 2. Averages of the same

number of high-, medium- and low-designable structures are

represented with solid lines and the same symbols as in Figure 1.

In addition, results for a particular low-designable structure are

shown with a dashed line and an ‘X’ to demonstrate that there

is considerable variation among low-designable structures in the

crossover position of the lowest-fitness recombinants (this was

also replicated four times).
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sampling of these structures might lead to more accurate

results. We first tried sampling a set of the closest structures

(those with the most shared contact pairs), plus an equal-sized

set of randomly sampled structures for a sequence of length 36

on a 6 £ 6 lattice, to estimate the remainder of the partition

function. Comparing set sizes of 50 and 50; 500 and 500; and

5,000 and 5,000, we found that set sizes of 5,000 were

necessary to obtain a reasonably good approximation of the

probability of folding to the native structure (Figure 5A).

The important region of sequence space is not random,

however, but is the region closest to the well-folded and

relatively fit sequences achieved at equilibrium. To evaluate

this region, we ran evolutionary simulations as described

earlier and considered the accuracy of our approximation for all

the sequences, including mutants, that were generated in 800

generations after reaching equilibrium (Figure 5B). In this

region, the results were not as accurate as we might have

hoped, and so we tested another approximation in which

the partition function was divided according to structural

distance from the target structure and the partial partition

function for each structural distance category was sampled

and estimated separately. This resulted in a dramatic increase

in accuracy (Figure 5C). For comparison, we evaluated a

structurally divided estimator using only 500 random struc-

tures and found that it was a more accurate estimator than

the entirely random sampling of 5,000 structures (Figure 5D).

Discussion

We have described here the overall motivation of our work

in ab initio evolution and how it relates to evolutionary

genomics. In general, we are trying to use realistic thermo-

dynamic and evolutionary simulations make better predictions

of the kinds of evolutionary features that we might expect

from real proteins with realistic functional requirements. This

is done in order that we might then develop models to detect

the presence of such features in real proteins using comparative

genomics. Here, to illustrate our approach, we present a study

that was designed specifically to achieve a better understanding

of the process of divergence with respect to protein function

and fitness. To what extent does molecular co-evolution

between residues as proteins evolve lead to reduced fitness in

recombinants between diverged proteins?

Our primary result is that the answer to this question is

highly dependent on the type of structure being considered.

High-designable structures are infrequent and evolve quickly

due to the larger number of sequences that fold to them;

however, they produce highly fit homologous recombinants,

even after long periods of divergence. Structures that are

compatible with fewer sequences, the much more common

and slow-evolving low-designable structures, are much less

likely to produce fit recombinants.

Thus, it should be expected that in low-designable structures,

recombination is a less efficient method to explore sequence

space for novel variants because many recombinants will be

structurally unfit. This has obvious implications for protein

engineering, in which in vitro evolution and recombination are

important methods for generating variation. It is also important

for understanding how to use observations of sequence evol-

ution to predict the effect of sequence variants in the human

genome and to identify those variants that are most likely to

cause disease. Since there is more co-evolution and incompat-

ibility between diverged low-designable proteins, divergence in

low-designable proteins is probably a worse predictor of variant

effects than in medium- and high-designable proteins.

Another interesting aspect that arises from our simulations is

the high degree of asymmetry in fitness between reciprocal

recombinants, particularly in low-designable structures. This

effect is sufficiently strong that the worse reciprocal recombi-

nant would generally be quickly eliminated by selection,

whereas for high- and medium-designable structures, the better

of the two reciprocal recombinants might not be eliminated in

this way, even after long periods of divergence. The potential

benefits of recombinant diversity, such as those that a recom-

binant immunodeficiency virus might be expected to incur by

presenting novel epitopes to the human immune system, were

not modelled in this study. They would have to be rather strong,

however, to overcome the deleterious effect of recombination

in low-designable protein structures. Interestingly, we have

observed this effect even more clearly in binding studies that do

not involve competition between structures (to be described

Figure 4. The average fitness of co-selected protein pairs as a

function of the number of shared contacts between the pairs.

Populations of size 1,000 were equilibrated for N generations

under a co-selection regime (see methods). The fitness values

were averaged across all structure pairs with the same number

of shared contacts. Since there was no correlation between

fitness of co-selected pairs and the designabilities of the struc-

tures in the pair, the fitnesses shown here were averaged over

all possible structure pairs regardless of designability.
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more thoroughly elsewhere). Thus, the asymmetry appears to

arise mostly from evolution on an energy landscape, and may

even be somewhat ameliorated by the force of structural

competition in high- and medium-designable structures.

Previously, it has been observed that evolution can drive

sequences towards high-designable structures23,29 — and pre-

sumably recombination can drive it even faster.26 Our detailed

analysis of the process of divergence and recombination based

on occupancy of alternative structures provides no evidence of a

bias or tendency for low-designable structures to mutate or

recombine towards high-designable structures. Furthermore,

our use of co-selection to analyse the boundary in sequence

space between structures indicates that there is no bias towards

the more designable structure at these boundaries. Together,

these data indicate that populations evolving without

recombination tend towards high-designable structures solely

because of the larger size of the high-designable sequence space.

Recombining populations tend even more towards high-

designable structures because of the greater tendency for

recombinants to move out of low-designable sequence space in

any direction. With a greater number of structures close to low-

designable structures, there are a greater number of sequence

pair boundaries, which provide high-fitness openings to other

structures and thus a faster approach to local equilibrium.

Our analysis of the processes of divergence and

co-evolution also clarifies the extent to which it is necessary

Figure 5. Relationship between the true probability of folding to the target sequence and the approximate probability of folding esti-

mated from a limited sample of structures. Sequences were sampled either randomly (A) or else all mutants were sampled for 800 gen-

erations of the evolutionary process subsequent to equilibrium (B–D). The approximate probability of folding was estimated from a

sample of random structures plus the same number of structures closest to the native structure in terms of shared contact pairs (B).

The random sample was treated as a representative of the remaining unsampled structural ensemble and thus multiplied by the inverse

of its proportional representation of this ensemble (see Materials and methods). In (C) and (D), each category of structural distance

from the native or target structure was sampled separately, and the contribution of each distance category to the overall partition func-

tion was also estimated separately. The number of random and adjacent structures used in the approximations was 5,000 in all cases

except (D), for which 500 distance-based random structures and 500 adjacent structures were used.
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to incorporate alternative structures when trying to understand

evolutionary trajectories of real proteins. It is well known

that the energetic compatibility of sequences with target

structures alone is an insufficient description of thermo-

dynamic constraints, but it is not always easy to know what

aspects of entropy are important. Here, we have seen that

for evolutionarily equilibrated proteins, the importance of

different structures in evolutionary competition is a simple

(log linear) function of their distance from a target

(ie presumably functional) structure.

Empirical testing of inclusion of both random and adjacent

‘decoy’ structures has already been used to improve predictions

of protein structures.1,40–43 Our results might be used to

improve the distribution of decoy structures that ought to be

included. One must make choices when trying to reproduce

essential biological features in the face of immense compu-

tational burdens. Our conclusion is that these modified fitness

functions could be used to analyse more complicated structural

scenarios with a much lower computational burden then

would otherwise be the case. It also seems likely that sampling

from known protein database structures to estimate energy

functions44 is probably insufficient to understand the evolution

of sequences in structure space because adjacent structures are

far more important in determining the evolutionary trajectory

of stable sequences.

Estimating the number of sequences that will fold to a

naturally occurring protein structure is not feasible, since

the number of folds is so high and determining whether a

sequence achieves a particular fold is so difficult. Nevertheless,

natural proteins are evolved thermodynamic objects and

approximate methods of predicting designability indicate

that it is an important property of real proteins.37,45–47 The

designability principle, postulated from simple models, is

believed to hold in real proteins.46 Designability affects rates

of sequence evolution (issues of function and selective

importance aside), here we show that, counter to intuition, it

affects neutral rates of co-evolution and functional divergence

in an exactly opposite manner. This means that different

proteins will be more or less amenable to in vitro redesign using

mutation and recombination, and that the course of viral

evolution through mutation and recombination may be

affected by the designability of their component proteins. It

also means that the use of comparative genomics to predict

the function of possible disease-related variants may need to

rely on an understanding of the type of protein structures

involved, since the degree of epistatic interaction between

variants is highly dependent on designability.
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