Document Type

Article

Journal or Conference Title

Human Genomics

ISSN

1479-7364

Volume

2

Issue

3

First Page

158

Last Page

167

Publication Date

9-2005

Department

Natural Sciences and Mathematics

Abstract

We have only a vague idea of precisely how protein sequences evolve in the context of protein structure and function. This is primarily because structural and functional contexts are not easily predictable from the primary sequence, and evaluating patterns of evolution at individual residue positions is also difficult. As a result of increasing biodiversity in genomics studies, progress is being made in detecting context-dependent variation in substitution processes, but it remains unclear exactly what context-dependent patterns we should be looking for. To address this, we have been simulating protein evolution in the context of structure and function using lattice models of proteins and ligands (or substrates). These simulations include thermodynamic features of protein stability and population dynamics. We refer to this approach as 'ab initio evolution' to emphasise the fact that the equilibrium details of fitness distributions arise from the physical principles of the system and not from any preconceived notions or arbitrary mathematical distributions. Here, we present results on the retention of functionality in homologous recombinants following population divergence. A central result is that protein structure characteristics can strongly influence recombinant functionality. Exceptional structures with many sequence options evolve quickly and tend to retain functionality--even in highly diverged recombinants. By contrast, the more common structures with fewer sequence options evolve more slowly, but the fitness of recombinants drops off rapidly as homologous proteins diverge. These results have implications for understanding viral evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process can also guide improved methods for accurately approximating folding probabilities in more complex but realistic systems.

Publisher Statement

Originally published as: Yanlong O. Xu, Randall W. Hall, Richard A. Goldstein, and David D. Pollock, "Divergence, recombination and retention of functionality during protein evolution", Human Genomics 2, 158-167, 2005. Publisher's version available at http://www.humgenomics.com/content/2/3/158

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Chemistry Commons

Share

COinS